Midcoast Council

Stage 1 & 2 Site Contamination Assessment

Proposed Visitor Information Centre

17 Denison Street, Gloucester

Report No. RGS02423.1-AB

8 February 2022

RGS02423.1-AB

8 February 2022

Midcoast Council PO Box 482 TAREE NSW 2430

Attention: Hugh Lyall

Dear Hugh

RE: Proposed Visitor Information Centre - 17 Denison Street, Gloucester

Stage 1 & 2 Site Contamination Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a combined Stage 1 and Stage 2 site contamination assessment for a proposed visitor information centre at 17 Denison Street, Gloucester, NSW.

The assessment found that remediation works will be necessary to enable the site to be made suitable for the proposed development from a contamination perspective. Further assessment will be necessary to determine the extent of remediation works required.

The work presented herein was reviewed by Dr David Tully CEnvP SC. A copy of Dr Tully's letter pertaining to the review is appended to the report.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of

Andre Hay

Regional Geotechnical Solutions Pty Ltd

Prepared by

Andrew Hills

Senior Environmental Engineer

Email <u>andrew.h@regionalgeotech.com.au</u>
Web: <u>www.regionalgeotech.com.au</u>

Table of Contents

1	INTR	ODUCTION & BACKGROUND	1
	1.1	Objectives	1
	1.2	Scope of Works	1
	1.3	Site Identification	2
2	SITE	DESCRIPTION	
	2.1	Topography and Drainage	3
	2.2	Geology	3
	2.3	Hydrogeology	5
	2.4	Site History	
	2.4.	1 Historical Aerial Photography	
	2.4.2	2 Site Observations	
	2.4.3	NSW EPA Records	8
	2.4.4	4 Land Title Search	8
	2.4.5	5 Anecdotal Information	
	2.4.6	SafeWork NSW Hazardous Chemical on Premises Search	10
	2.4.	7 Site History Summary	10
3	Field	and Laboratory Investigations	10
	3.1	Sampling Plan	10
	3.2	Field Work	11
	3.3	Laboratory Analysis	12
	3.3.	1 Soil	12
	3.3.2	2 Groundwater	12
	3.4	Data Quality Objectives	12
4	Guid	delines and Assessment Criteria	14
	4.1	Soil	14
	4.2	Groundwater	15
	4.3	Quality Assurance / Quality Control	15
	4.3.	1 Soil	15
	4.3.2	2 Groundwater	16
5	SITE	CONTAMINATION ASSESSMENT - RESULTS	17
	5.1	Subsurface Conditions - Soil	17
	5.2	Field Observations - Groundwater	
	5.3	Laboratory Results	18
	5.3	1 Soil	18

	5.3.2	? Groundwater	19
	5.4	Conceptual Site Model	20
	5.4.1	Potential Sources of Contamination	20
	5.4.2	Potential Exposure Pathways and Receptors	22
	5.5	Discussion	22
	5.6	Site Assessment Conclusions and Recommendations	24
6	DISP	OSAL OF MATERIALS	2
	6.1	Preliminary Waste Classification	25
7	LIMIT	ATIONS	20

Figures

Figure 1 Site Location Plan

Figure 2 Former Fuel Services Layout Plan

Figure 3 Sample Location Plan

Appendices

Appendix A Results of Field Investigations
 Appendix B Laboratory Test Result Sheets
 Appendix C Site History Documentation
 Appendix D Calibration Certificates
 Appendix E Letter from Dr David Tully CEnvP SC

1 INTRODUCTION & BACKGROUND

Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a combined Stage 1 and Stage 2 site contamination assessment for a proposed visitor information centre (VIC) at 17 Denison Street, Gloucester, NSW. The site is identified as Lot 1 DP571352 and covers approximately 3,500m². The location is shown on Figure 1.

It is understood Midcoast Council (Council) is considering acquiring the site from Crown Lands to potentially construct a new and combined interactive VIC, in collaboration with National Parks and Wildlife Service.

The site is a former petrol station and, as a result, Council understands that the land may be contaminated. However, little other information with regard to the former service station and/or its current contamination status, is known.

It is not known when the service station was decommissioned and how many Underground Fuel Storage Tanks (USTs) were present, or if they have been removed or decommissioned in-situ. It is known that the former bowers have been removed, however, it is not known when. There are no existing contamination assessment reports available.

Council requires a Stage 1 & 2 site contamination assessment to evaluate the site's suitability for the proposed VIC from a contamination perspective prior to it acquiring the property.

The work was commissioned by Hugh Lyall of Council in accordance with RGS proposal number RGS02423.1-AA, dated 9 November 2021.

1.1 Objectives

The objectives of the DSI were to:

- Characterise the nature and extent of soil and groundwater contamination present on the site (if any);
- · Assess the suitability of the site for ongoing commercial/industrial land use; and
- Provide recommendations for on-site management, the need and options for remediation and any further investigation and testing that is required.

1.2 Scope of Works

In accordance with the relevant sections of the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), the assessment involved the following process:

- A brief study of site history, with the aim of identifying past activities on or near the site that might have the potential to cause contamination;
- Review of selected available recent and historical aerial photography for the last 50 years;
- A search of NSW EPA records, or contaminated land notifications on the site;
- Review of government records of groundwater bores in the area;
- A SafeWork NSW Hazardous Chemical on Premises Search:

- Walkover to assess the layout of the tank farm and fuel infrastructure, visible surface conditions and identify evidence of contamination, or past activities that may cause contamination across the site;
- Discussion with adjoining property owner/staff to obtain information regarding site history and past site activities;
- Drilling of eight boreholes across the site using a truck-mounted drill rig to depths of between 1.6m and 3.5m below ground surface to allow for the collection of soil samples for subsequent laboratory analysis;
- Collection of six surface soil samples using hand tools;
- Installation of groundwater monitoring wells into three of the boreholes outlined above for the collection of groundwater samples for subsequent laboratory analysis. Two of the wells (MW1 and MW2) were installed within the tank farm area following coring through the existing concrete slab pavement;
- Head space screening of soil samples for volatile hydrocarbon vapours using a Photoionization Detector (PID);
- Using the above information, characterise the site into Areas of Environmental Concern, in
 which the potential for contamination has been identified, and nominate Chemicals of
 Concern that might be associated with those activities;
- Undertake targeted sampling and analysis at the selected Areas of Concern to allow for analysis of the presence of contamination;
- Analysis of soil and groundwater samples for a broad suite of potential contaminants including those associated with hydrocarbon storage; and
- Evaluate the results against industry accepted criteria for the ongoing commercial/industrial landuse.

1.3 Site Identification

General site information is provided below in Table 1. The site location is shown in Figure 1.

Table 1: Summary of Site Details

Site Details	Description
Site Location:	17 Denison Street, Gloucester, NSW
Approximate Site Area:	3,500m ²
Title Identification Details:	Lot 1 DP 571352
Current Ownership:	The State of NSW

Current Landuse:	Unoccupied / vacant building (former service station, machinery shop and tyre service centre)	
Proposed Landuse:	Visitor Information Centre	
Adjoining Site Uses:	 Denison Street to the north; Open space, car park and Billabong Lane to the east; Existing industrial premises to the south; and Open space and creek (tributary of Gloucester River) to the west. 	
Government Area:	Midcoast Council	

2 SITE DESCRIPTION

2.1 Topography and Drainage

The site is located within a region of moderately to steeply undulating terrain and is situated on a typically flat parcel of land to the west of the Gloucester CBD.

Surface elevations are inferred to vary between RL92m and RL94m AHD. Drainage is anticipated to be via overland flow into the street drainage system and creek located to the west of the site.

Vegetation is limited to garden beds, grass and weeds around the existing building.

A small fill stockpile is located in the western part of the site.

The existing building is a large industrial shed type building with a shop front facing Denison Street. It is of brick and aluminium sheeting construction. The shop part was used as a machinery shop and a service station prior to that. There is an awning extending out from the shop front over which the former fuel bowsers were located; the concrete plinths which the bowsers were located on remain.

The area facing Denison Street comprises pavement and car parking areas and is where the USTs are present. The UST fill points are still present on the ground surface along with the fuel breathe pipes which are located at the north-east corner of the building.

The inferred layout of the former fuel services is shown on Figure 2.

The remaining areas not covered by pavement or the building comprise hardstand areas (which are currently used for truck parking) and storage of old industrial equipment and scrap.

The western part of the building was previously used as a tyre service centre.

2.2 Geology

Reference to the Minview website indicates that the site is underlain by Wards River Conglomerate rocks comprising polymictic conglomerate, fine-grained siliceous volcanics and lithic sandstone.

The materials encountered during the investigation are summarised in Table 2 and Table 3. Further details are presented on the attached engineering logs (Appendix A).

Table 2: Summary of Geotechnical Units

Unit	Material	Material Description
UNIT 1	Concrete Pavement or Pavement Seal	Concrete of bitumen pavement
UNIT 2	Fill (hardstand)	Sandy Gravelly CLAY, low to medium plasticity, brown / orange / dark brown, gravel, coarse grained, sand, fine to medium grained
UNIT 3	Fill	Sandy Gravelly CLAY, low to medium plasticity, brown / orange, gravel, coarse grained, sand, fine to medium grained, some roots
UNIT 4	Alluvial Soil	Silty or Sandy CLAY, low to medium plasticity, grey / dark grey / brown / pale brown / orange, sand, fine to medium grained, trace gravel, coarse grained, gravel content increasing with depth from about 2m below ground surface

Table 3: Summary of Subsurface Profile

	Depth of Material Layer (m)			
Borehole	UNIT 1 Pavement	UNIT 2 Fill (hardstand)	UNIT 3 Fill	UNIT 4 Alluvial Soil
BH1	0.0 – 0.2			0.2 - ≥3.5
BH2	0.0 – 0.2			0.2 - ≥3.5
BH3			0.0 - 0.6	0.6 - ≥3.5
BH4		0.0 – 0.25		0.25 - ≥1.6
BH5				0.0 - ≥1.6
BH6			0.0 – 0.25	0.25 - ≥1.6
BH7		0.0 - 0.45		0.45 - ≥2.2
BH8	0.0 - 0.05		0.05 – 0.3	0.3 - ≥1.6

Groundwater was encountered within boreholes BH1, BH2 and BH3 at depths of 1.6m, 2.2m and 1.4m below ground surface during the limited time they remained open on the day of the field investigations. Groundwater was not encountered within the remaining boreholes.

It should be noted that fluctuations in groundwater levels can occur as a result of seasonal variations, temperature, rainfall, and other similar factors, the influence of which may not have been apparent at the time of the assessment.

2.3 Hydrogeology

A groundwater bore search on the NSW Water Information website, http://waterinfo.nsw.gov.au/gw/ indicates that there is a licenced groundwater bore (with available work summary) located approximately 90m to the west of the site as shown below:

Plate 2: Approximate site boundary outlined in green. Nearest off-site licensed groundwater bore is located approximately 900m to the west of the site.

Groundwater bore GW024725 was drilled to a depth of 5.0m on 1 January 1980, is licenced for groundwater explorations and its licence status is unknown. The driller's log indicates that the soil profile comprised the following:

From (m)	To (m)	Thickness (m)	Drillers Description	Geological Material
0.00	3.50	3.50	Silt	Silt
3.50	5.00	1.50	Sand Cobbles	Sand
5.00	5.01	0.01	Bedrock	Bedrock

No other information is included on the bore work summary.

The groundwater table was encountered at depths of between 1.6m and 2.2m below ground surface during the site investigation. Overall groundwater flow would be expected to be towards the west and north-west, towards the unnamed creek (tributary of the Gloucester River which was flowing at the time of the field work) and the Gloucester River respectively. Therefore, the nearest off-site surface water ecological receptor would be the aquatic ecosystems of the creek (which is located about 40m to the west of the site) and the Gloucester River. The creek had heavy water flow at the time of the drilling on 9 December 2021 but was dry on subsequent site visits on 15

December 2021, and 13 January 2022 respectively. As such, the creek is considered to be ephemeral in nature.

Adopted groundwater investigation levels are discussed in Section 4.2.

2.4 Site History

2.4.1 Historical Aerial Photography

Available aerial photographs of the site were reviewed to assist in identifying past land uses that may contribute to site contamination. The results of the review are summarised in Table 4.

Table 4 - Aerial Photograph Summary

Year	Site	Surrounding Land
1967	The existing building and adjoining awning facing Denison Street is visible in the photograph. The remainder of the site appears to be vacant.	Denison Street appears to be unsealed. The CBD of Gloucester is visible to the east with vacant land to the north and south.
1982	The building has been extended from the south-west corner and the remainder of the site appears to have been paved and/or used for storage of unknown objects. There is an access track on the western side of the building extending from Denison Street to the adjoining property to the south.	Land immediately to the south appears to be occupied by industrial premises. The Gloucester CBD appears to have expanded to the east of the site.
1992	No visible changes from the previous photograph.	No visible changes from the previous photograph.
2002 (Google Earth)	The existing building appears to have been extended to the south. No other changes are visible from the previous photograph.	No visible changes from the previous photograph.
2013 (Google Earth)	There appears to be industrial equipment / scrap waste materials stored in the south-western part of the site at the rear of the existing building.	No visible changes from the previous photograph.
2020 (Google Earth)	No visible changes from the previous photograph.	No visible changes from the previous photograph.

2.4.2 Site Observations

Observations from a contamination perspective made during the site visits are summarised below:

- The majority of the site is occupied by the existing building and/or pavement with the remaining areas being occupied by hardstand;
- The existing building is irregular in shape and is of brick and metal sheeting construction, and has a shop front facing with adjoining awning facing Denison Street;
- The area fronting Denison Street has concrete pavement;
- There was evidence of existing USTs with fill points labelled with "ULP" and "diesel" on the
 concrete pavement in front of the building as well two breathe pipes near the north-east
 corner of the building and concrete plinths beneath the awning where what appeared to
 be the locations of former fuel bowsers;
- The western part of the building was a former tyre service centre as the old signs indicating as such were present;
- A fill stockpile was present in the western part of the site;
- Old industrial equipment and waste materials including metal objects, wooden pallets, tyres, drums of lubricant (empty) and a shipping container were stored on the ground surface in the south-west part of the site around the former tyre service area;
- No obvious Asbestos Containing Materials (ACM) were noted, however a full ACM assessment was not completed as part of this scope of works.

A selection of images of the site is presented below.

Looking west showing the front of the existing building which was a former machinery shop and service station. Two UST fill point are visible on the ground surface and two breathe pipes are shown on the outside of the building on the left (bound by red outlines).

Looking east showing the front of the existing building. Two UST fill point are visible on the ground surface and what appears to be the location of the old fuel lines connecting the USTs to the bowsers (bound by red outlines).

Looking south in the western part of the site showing the hardstand area and former tyre service centre part of the building in the background.

Looking east in the south-west part of the site showing stored industrial equipment, scrap materials and shipping container.

Looking north in western part of the site showing the fill stockpile and access track which adjoins Denison Street and the adjoining property to the south.

Old tyres on the ground surface on the western side of the existing building.

2.4.3 NSW EPA Records

A check with the NSW Office of Environment and Heritage website (www.environment.nsw.gov.au) revealed that no notices have been issued on the site under the Contaminated Land Management Act (1997).

2.4.4 Land Title Search

A list of past registered proprietors and lessors of the site was obtained from the Land Titles Office. A summary of the title details is included in Appendix C.

The title history search revealed the following:

1909 - 1931	Harry Joseph Green, farmer
1931 - 1950	Marion Josephine Green, widow
	Harry Joseph Green, estate
1950 - 1951	Samuel James Ross Pryor, clerk
	Vera Emily Pryor, wife
1951 - 1955	Sidney Garland, farmer
	Mary Garland, wife
1955 - 1956	Mary Garland, widow
1956 - 1968	Gloucester Motors Pty Limited (in liquidation)
1968 - 1968	Ernest William Mussared, company director
	Alice May Mussared, wife
1968 - 1971	Unknown – no information available
1971 - 1974	The Commercial Banking Company of Sydney Limited
	(Mortgagors Ernest William Mussared, company director and Alice May Mussared, wife)
1974 - 1975	Ernest William Mussared, company director
	Alice May Mussared, wife
1975 - 2005	Gloucester Machinery Co. Pty Limited
2005 - 2019	Stephen John Griffin
	Nerida Joy Griffin
2019 - 2019	Alan Richard Nicholls
	(Trustee of the bankrupt estate of Stephen Joh Griffin & Nerida Joy Griffin)
2019 - to date	The State of New South Wales

2.4.5 Anecdotal Information

A worker from the adjoining industrial property to the south provided the following information:

• The premises ceased functioning as an operating as a service station about 10 to 15 years ago (circa 2001 to 2006); and

• After the service station closure the premises operated as a machinery shop which closed about 5 years ago (circa 2016).

2.4.6 SafeWork NSW Hazardous Chemical on Premises Search

A search of the SafeWork NSW Hazardous Chemicals Stored on Premises database revealed the following:

- The earliest licence indicates that 2,000 gallons of mineral spirit were stored on the site with the licence dated 2 April 1958;
- The most recent licence dated 6 April 2001 (with an expiry date of 9 April 2002), was for four UST's which were shown on a plan as being present within a tank farm area located beneath the concrete pavement in front of the existing building; and
- The tank farm comprised two 4,500L unleaded petrol USTs in the eastern part, one 12,000L diesel UST in the central part, and one 27,000L unleaded petrol UST in the western part, of the tank farm.

The search documents are presented in Appendix C.

2.4.7 Site History Summary

Based on available data the chronological development of the site is summarised below:

- Historically, the site has been used for commercial / industrial purposes since at least the late 1950's;
- Aerial photographs indicate that the existing building was present prior to 1967 with an
 extension to the south-west corner between 1967 and 1982; and a subsequent extension to
 south toward the property boundary between 1992 and 2002;
- The search of the hazardous chemicals on premises database indicates that hydrocarbon fuels have been stored on the site since at least 1958 with the last known licence expiry being in 2002;
- Anecdotal and land title information suggests that the site has previously been used as a service station, machinery shop and a tyre service centre;
- Site observations indicate that the USTs are still in-situ in the layout as shown on site plans included in the search of the hazardous chemicals on premises database;
- Based on the above, it is likely that underground hydrocarbon fuel has been undertaken for over 60 years; and
- The site appears to have remained largely unchanged from its current state since 2002.

3 Field and Laboratory Investigations

3.1 Sampling Plan

The NSW EPA (1995) Sampling Design Guidelines recommend a minimum of ten sampling locations to characterise a site of 3,500m². Sampling locations were selected using a judgemental approach

based on the identification of Areas of Environmental Concern. Fourteen sampling points were included for this investigation thereby exceeding the minimum number required.

Twenty-three soil samples were obtained from the boreholes (BH1 to BH8) and surface locations (SS1 to SS6), and three groundwater samples were obtained from the groundwater monitoring wells (MW1 to MW3).

The sampling locations are shown on Figure 3. Groundwater field sampling sheets are presented in Appendix A.

3.2 Field Work

Field work for the assessment was undertaken by an Environmental Engineer from RGS on 9 and 15 December 2021 and 13 January 2022, and included:

- Site walkover to assess visible surface conditions and identify the UST farm layout and evidence of contamination, or past activities that may cause contamination;
- Drilling of eight boreholes (BH1 to BH8) using a truck mounted drilling rig to depths of between 1.6m and 3.5m below ground surface;
- Installation of groundwater monitoring wells into three of the boreholes outlined above for the collection of groundwater samples for subsequent laboratory analysis. Two of the wells (MW1 and MW2) were installed within the UST farm area following coring through the existing concrete slab pavement;
- Collection of soil samples from the boreholes and head space screening for volatile hydrocarbon vapours using a Photoionization Detector (PID); and
- Collection of groundwater samples from the monitoring wells.

The locations of the sampling points and groundwater monitoring wells are shown on Figure 3. They were obtained on site and located by measurement relative to existing site features.

Soil samples were taken from fill and natural soils using disposable gloves and hand tools which were decontaminated between sampling points using Decon90 detergent and deionised water. The samples were collected in acid-rinsed 250mL glass jars and placed in an ice-chilled cooler box.

Purging and sampling of the groundwater wells was undertaken using a disposable polyethylene bailer to sample each well to limit the potential for cross contamination. New dedicated disposable nitrile gloves were used at each sample location.

In-situ field groundwater quality parameters were measured using a hand-held multiparameter water quality meter (model HAN-9829-4M) including dissolved oxygen (DO), electrical conductivity (EC), redox potential (Eh), pH and temperature. The calibration certificate (Worksheet No. 599917) for the water quality meter is attached in Appendix D.

Qualitative observations of groundwater quality were also made (including water colour, turbidity, odour and sheen).

The groundwater quality parameters and qualitative observations are shown on the groundwater sampling field sheets in Appendix A.

Groundwater samples were preserved as per the National Association of Testing Authority (NATA) accredited laboratory information and stored in a cooler immediately whilst on site and in transit to the laboratory.

Quality control procedures included collecting one intra-laboratory duplicate sample from monitoring well MW1. One equipment rinsate sample was collected on the day of the sampling (15 December 2021) and one trip blank and trip spike were dispatched in the cooler with the samples to the laboratory. The quality control procedures were undertaken to aid in the assessment of data quality.

3.3 Laboratory Analysis

3.3.1 Soil

Samples were transported under chain-of-custody conditions to ALS Laboratory Group, a NATA accredited specialist chemical testing laboratory, to be analysed for the following suite of contaminants;

- · Polycyclic Aromatic Hydrocarbons (PAH);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethyl-benzene, Xylenes (BTEX);
- Organochlorine and Organophosphorus Pesticides (OC/OPs);
- · Heavy metals (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, and zinc);
- Polychlorinated Biphenyls (PCB); and
- Presence of asbestos.

The results are presented in Appendix B.

3.3.2 Groundwater

Samples were transported under chain-of-custody conditions to ALS Laboratory Group, a NATA accredited specialist chemical testing laboratory, to be analysed for the following suite of contaminants;

- Polycyclic Aromatic Hydrocarbons (PAH);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethyl-benzene, Xylenes (BTEX); and
- Heavy metals (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, and zinc);

The results are presented in Appendix B.

3.4 Data Quality Objectives

The Data Quality Objectives (DQOs) are presented in Table 5.

Table 5 - Data Quality Objectives

DQO	Details of Process
State the Problem	A site contamination assessment is required to assess the suitability of the site for commercial/industrial land use from a contamination perspective.
Identify the Decision	The principal study questions that are: What is the nature and extent of soil and groundwater contamination on the subject land (if any)?; and Is the land suitable for the proposed visitor information centre from a contamination viewpoint?
Identify Inputs to the Decision	 Site history study; Site walkover assessment; Chemical analysis and asbestos screening of selected soil and groundwater samples; PID screening of soil samples; and Results summary.
Define the Boundary of the Assessment	 The spatial boundaries are limited to the property boundaries of the subject site as shown on Figure 1; and The investigation and screening levels for a Commercial / Industrial D land use scenario.
Develop a Decision Rule	 The decision rules for the investigation are: If concentrations of contaminants in soil exceed the adopted investigation and screening levels for a Commercial / Industrial D land use scenario, then further assessment may be required; If concentrations of contaminants in groundwater exceed the adopted investigation and screening levels for vapour intrusion and the protection of 95% of species for freshwater aquatic ecosystems, then further assessment may be required. Decision criteria for QA/QC measures are defined in Section 4.3. A decision on the acceptance of analytical data will be made on the basis of the data quality indicators (DQIs) in the context of precision, accuracy, representativeness, completeness and comparability (PARCC) parameters as follows: Precision: NATA registered laboratories were used following NATA
	Precision: NATA registered laboratories were used following NATA endorsed methods. An appropriate number of intra-laboratory samples were collected and analysed (following ASC NEPM guidance), the results of which are considered to be satisfactory;

	 Accuracy: The laboratory limit or reporting (LOR) was appropriate for the screening criteria utilised. NATA registered laboratories were used following NATA endorsed methods including appropriate method blanks, laboratory control samples, laboratory spikes and duplicates the results of which are considered to be satisfactory. Representativeness - The samples were received by the laboratories in good condition. The data obtained is considered to be representative of the soils present on site; Completeness - Experienced field staff were utilised to undertake the sampling and keep appropriate documentation. Samples were in proper custody between the field and reaching the laboratory. The laboratories performed the tests requested. The data obtained from the field investigations is considered to be relevant and usable; and Comparability - Sample holding times were met and samples were properly and adequately preserved. Field sampling and handling procedures were followed. The data collected is considered to be comparable.
Specify Acceptable Limits on Decision Errors	 Acceptable limits for QA/QC measures are defined in Section 4.1; Acceptable investigation and screening levels for soil are those for a Commercial / Industrial D land use scenario; Acceptable investigation and screening levels for groundwater are those for the protection of 95% of species for freshwater ecosystems; and Specific limits are in accordance with the appropriate NSW EPA guidelines including indicators of data quality and standard procedures for field sampling and handling.
Optimise the Design for Obtaining Data	Based on the above steps of the DQO process. The design for obtaining the required data (i.e proposed field and laboratory investigations) is presented in Section 3.1.

4 Guidelines and Assessment Criteria

4.1 Soil

Assessment as outlined in NSW EPA Guidelines for Consultants Reporting on Contaminated Land (2020).

To evaluate results, and for guidance on assessment requirements, the assessment adopted the guidelines provided in the *National Environment Protection* (Assessment of Site Contamination) Measure (NEPM 2013). The NEPM document provides a range of guidelines for assessment of contaminants for various land use scenarios. It is understood that the future land use for the site is industrial. As such, comparison with the NEPM guideline Health Investigation Levels (HIL) for Commercial / Industrial D land use is considered appropriate for the site. In accordance with the NEPM guideline the following criteria were adopted for this assessment:

- Health Investigation Levels (HILs) for commercial/industrial 'D' land use (HIL-D) were used to assess the potential human health impact of heavy metals and polycyclic aromatic hydrocarbons (PAHs);
- Health Screening Levels (HSLs) for coarse textured (sand) or fine textured (silt and clay) soils
 on a commercial/industrial site were adopted as appropriate for the soils encountered to
 assess the potential human health impact of petroleum hydrocarbons and benzene,
 toluene, ethylbenzene and xylene (BTEX compounds); and
- Ecological Screening Levels (ESLs) for coarse textured (sand) soils or fine textured (silt and clay) soils on a commercial/industrial land use site were adopted as appropriate for the soils encountered, to assess the potential ecological / environmental impact of petroleum hydrocarbons and BTEX compounds.

In accordance with NEPM 2013, exceedance of the respective criteria does not necessarily deem that remediation or clean-up is required but is a trigger for further assessment of the extent of contamination and associated risks. The adopted criteria are presented in results summary tables in Appendix B.

4.2 Groundwater

The NEPM 2013 provides a series of Groundwater Investigation Levels (GILs) for the protection of drinking water or aquatic ecosystems, as appropriate based on down-gradient recipients of groundwater emanating from the site. For assessing groundwater quality therefore, it is first necessary to assess the beneficial uses or sensitive receptors of groundwater down-gradient of the site being assessed.

As discussed in Section 2.4, the most sensitive receptors in the likely direction of groundwater flow are the aquatic ecosystems of the unnamed Creek and subsequently, the Gloucester River located to the west and north-west of the site respectively. It is therefore reasonable to adopt GIL's aimed at protecting the aquatic ecosystem. On this basis, the results of groundwater sampling and analyses were evaluated against ANZECC 2000 criteria for protection of 95% of species for freshwater ecosystems. The guidelines apply to water entering an ecosystem and are therefore conservative values for assessment of groundwater.

Due to the potential presence of volatile petroleum hydrocarbons within the groundwater regime, groundwater HSLs from the NEPM document have been utilised to assess potential risks associated with vapour intrusion.

4.3 Quality Assurance / Quality Control

4.3.1 Soil

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination. Sampling equipment was decontaminated between sample locations and a clean pair of nitrile gloves used for the collection of each sample into laboratory supplied glass sampling jars and bags.

Samples were placed on ice on-site and maintained on ice during transport to the testing laboratories. Two intra-laboratory duplicate soil sample were obtained and identified as:

- D1 duplicate of primary sample BH1 0.3 0.5m; and
- D2 duplicate of primary sample BH4 0.3 0.5m.

The duplicate samples were submitted to the laboratory for analysis for quality control purposes. Comparison between the primary and duplicate samples are presented in the results summary tables in Appendix B.

The Relative Percent Differences (RPDs) were calculated for the duplicate sample and presented in the results summary table in Appendix B. The RPDs were within the control limit of 40% and indicated good correlation between the primary and duplicate samples.

One rinsate sample (RINSATE) was collected from the hand tools to assess the efficacy of decontamination techniques. Analysis of the rinsate sample indicated that it was free of contaminants.

In addition to the field quality control procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix B.

All laboratory quality control data is within acceptable limits for the tests carried out. Therefore, on the basis of the results of the field and laboratory quality control procedures and testing, the data is considered to reasonably represent the concentrations of contaminants in the soils at the sample locations at the time of sampling and the results can be adopted for this assessment.

4.3.2 Groundwater

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination. Sampling and monitoring equipment were decontaminated between sample locations and a clean pair of nitrile gloves used for the collection of each sample into laboratory supplied sample bottles.

Samples were placed on ice on-site and maintained on ice during transport to the testing laboratories.

One intra-laboratory duplicate sample identified as DW1 (duplicate of primary sample MW1) was submitted to the laboratory for analysis for quality control purposes.

Comparison between the primary, duplicate and triplicate samples are presented in the results summary tables in Appendix B.

The Relative Percent Differences (RPDs) were calculated for the duplicate sample and presented in the results summary table in Appendix A. The RPDs were generally within the control limit of 40% with the exception of TRH (all fractions excluding C₆-C₉).

This discrepancy is likely to be the result of an uneven distribution of TRH impacted groundwater in the replicate samples as multiple bailer volumes were needed to in order to obtain the required volume for the various containers following field parameter measurement stabilisation. The higher concentrations reported in the primary sample have been used for data interpretation. As such, the RPD exceedance of the duplicate RPD is not considered to have affected the useability of the data obtained.

A trip blank and trip spike were taken during the sampling. Analysis of the trip blank indicated that it was free of contaminants. Analysis of the trip spike indicated that the contaminants were within the acceptable recovery limits.

One rinsate sample (RINSATE 2) was collected from the hand-held water quality probe to assess the efficacy of decontamination techniques. Analysis of the rinsate sample indicated that it was free of contaminants.

In addition to the field quality control procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix B.

All laboratory quality control data is within acceptable limits for the tests carried out. Therefore, on the basis of the results of the field and laboratory quality control procedures and testing, the data is considered to reasonably represent the concentrations of contaminants in the groundwater at the sample locations at the time of sampling and the results can be adopted for this assessment.

5 SITE CONTAMINATION ASSESSMENT - RESULTS

5.1 Subsurface Conditions - Soil

Moderate to strong hydrocarbon odour was present in borehole BH1 from 1.5m, in BH2 from 0.2m and in BH7 from 1.0m, until the depth of the holes were terminated respectively.

PID readings from samples which were headspace screened are outlined below:

- BH1 315ppm to 570ppm (moderate to high volatile vapour detected;
- BH2 310ppm to 414ppm (moderate volatile vapour detected);
- BH3 250pmm to 364ppm (moderate volatile vapour detected);
- BH4 190ppm (low to moderate volatile vapour detected);
- BH5 70ppm (low volatile vapour detected);
- BH6 65ppm (low volatile vapour detected);
- BH7 260ppm to 270ppm (moderate volatile vapour detected); and
- BH8 270ppm to 300ppm (moderate volatile vapour detected).

The calibration certificate (Worksheet No. 599038) for the PID is attached in Appendix D.

The soil types recorded in surface samples are summarised below in Table 6.

Table 6: Summary of Subsurface Conditions (Soil Samples)

Sample ID	Description
BH7 0.2 – 0.4m	Fill (hardstand): Sandy Gravelly CLAY, low to medium plasticity, brown / orange / dark brown, gravel, coarse grained, sand, fine to medium grained

BH3 0.3 – 0.5m SS1 – SS3 SS5 SS6	Fill: Sandy Gravelly CLAY, low to medium plasticity, brown / orange, gravel, coarse grained, sand, fine to medium grained, some roots
SS4	Fill Stockpile: Sandy Gravelly CLAY, low to medium plasticity, brown / dark brown, gravel, coarse grained, sand fine to medium grained, some roots. Material likely to be of topsoil and alluvial origin.
BH1 BH2 BH3 1.3 – 1.5m BH4 BH5 BH6 BH7 1.3 – 1.5m BH8	Alluvial Soil: Silty or Sandy CLAY, low to medium plasticity, grey / dark grey / brown / pale brown / orange, sand, fine to medium grained, trace gravel, coarse grained, gravel content increasing with depth from about 2m below ground surface

5.2 Field Observations - Groundwater

In-situ field groundwater quality parameters were measured using hand-held water quality probe. Measured parameters included dissolved oxygen (DO), electrical conductivity (EC), redox potential (Eh), pH and temperature. Qualitative observations of groundwater quality were also made (including water colour, turbidity, odour and sheen).

A summary of the observations is outlined below. Further information of the groundwater quality parameters and qualitative observations are shown on the sampling field sheets in Appendix A.

- Depth to groundwater in the wells prior to purging was 1.80m, 1.85mand 1.75m below ground surface in wells MW1, MW2 and MW3 respectively;
- A strong hydrocarbon odour was detected, and some sheening observed on extracted groundwater from MW1. The groundwater was brown and completely discoloured;
- A slight to moderate hydrocarbon odour was detected, and some slight sheening observed on extracted groundwater from MW2. The groundwater was brown and completely discoloured; and
- A slight hydrocarbon odour was detected, and some slight sheening observed on extracted groundwater from MW3. The observed odour and sheen decreased with purging. The groundwater was brown and completely discoloured.

5.3 Laboratory Results

5.3.1 Soil

An appraisal of the soil laboratory test results presented in Appendix B is provided below with reference to the adopted soil investigation and screening levels discussed in Section 4.1:

- Concentrations of heavy metals were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Commercial / Industrial D site in each of the samples analysed;
- Concentrations of TRH C₆-C₁₀ fraction exceeded the adopted HSL in two samples (BH7 1.3 1.5m and BH7 1.8 2.0m) located at front of the site (to the west of the two former unleaded USTs). The remaining TRH C₆-C₁₀ fraction concentrations were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Commercial / Industrial D site:
- Concentrations of the remaining TRH fractions and Total TRH (C₁₀-C₄₀) were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Commercial / Industrial D site in each of the samples analysed;
- Concentrations of Total PAH were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Commercial / Industrial D site in each of the samples analysed;
- Concentrations of Benzo-a-pyrene (B-a-p) exceeded the adopted ESL in two surface samples (SS1 and SS2) located along the edge of eastern side of the existing building. The remaining samples were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Commercial / Industrial D site;
- Concentrations of BTEX were either below the laboratory limit of reporting or below the
 adopted health investigation criteria for a Commercial / Industrial D site in each of the
 samples analysed with exception of BH7 1.3 1.5m and BH7 1.8 2.0m) located at front of
 the site (to the west of the two former unleaded USTs) which exceeded the adopted ESL;
- Concentrations of PCB and OP pesticides were below the laboratory limit of reporting in each of the samples analysed;
- Concentrations of OC pesticides were below the laboratory limit of reporting in each of the samples analysed with the exception of samples SS1 and SS2 located along the edge of eastern side of the existing building which exceeded the laboratory limit of reporting, in the form of Chlordane and Dieldrin, and Chlordane respectively, but were both well below the adopted health investigation criteria for a Commercial / Industrial D site; and
- Asbestos was not detected in each of the soil samples analysed with the exception of sample SS4 collected from the fill stockpile in the west of the site which had trace asbestos detected as being present but at low levels that could not be quantified by the testing laboratory.

5.3.2 Groundwater

An appraisal of the groundwater laboratory test results presented in Appendix B is provided below with reference to the adopted groundwater investigation and screening levels discussed in Section 4.2:

• Concentrations C₆-C₁₀ exceeded the laboratory limit of reporting in samples MW1 and MW2 which are located within the UST farm area at the front of the site;

- Concentrations of C₁₀-C₄₀ TRH hydrocarbons exceeded the adopted investigation and screening levels in samples MW1 and MW2 which are located within the UST farm area at the front of the site. Concentrations were particularly elevated in the sample from MW1;
- Concentrations PAH exceeded the laboratory limit of reporting in samples from MW1 and MW2 which are located within the UST farm area at the front of the site;
- Concentrations of Naphthalene exceeded the adopted investigation and screening levels in sample MW1 which is located within the UST farm area at the front of the site, and were below the laboratory limit of reporting in samples from MW 2 and MW3;
- Concentrations of BTEX exceeded the adopted investigation and screening levels in the sample from MW1 which is located within the UST farm area at the front of the site, and exceeded the laboratory limit of reporting in but were well below the adopted investigation and screening levels in the sample from MW2;
- Concentrations of Arsenic exceeded the adopted investigation and screening levels in sample MW3 which is located south-western part of the site in front of the former tyre service centre, and exceeded the laboratory limit of reporting but were well below the adopted investigation and screening levels in MW1 and MW2;
- Concentrations of Cadmium exceeded the adopted investigation and screening levels in the samples from MW2 and MW3, and was below the laboratory limit of reporting in in MW1;
- Concentrations of Chromium, Copper, Lead and Zinc exceeded the adopted investigation and screening levels in each of the samples (MW1, MW2 and MW3);
- Concentrations of Nickel exceeded the adopted investigation and screening levels in the samples from MW2 and MW3, and exceeded the laboratory limit of reporting in but was below the adopted investigation and screening levels in the sample from MW1;
- Concentrations of Mercury were either below the laboratory limit of reporting or below the adopted investigation and screening levels in each of the samples (MW1, MW2 and MW3); and
- Concentrations of TRH, PAH and BTEX were below the laboratory limit of reporting in the sample from MW3.

<u>Note:</u> Heavy metals analyses for sample MW3 was reported as total rather than dissolved heavy metals due to the elevated fines and suspended solids content in the groundwater sample. As such, field filtering was not possible so total heavy metals have been provided.

5.4 Conceptual Site Model

Based on the site observations and knowledge obtained about site activities as outlined above, a conceptual site model (CSM) has been developed.

5.4.1 Potential Sources of Contamination

Potential Areas of Environmental Concern (AECs) and Chemicals of Concern (COCs) identified for the assessment are outlined in Table 7.

Table 7: Potential AECs and COCs

AEC	Mode of Potential Contamination	Potential COCs	Likelihood of Contamination		
AEC1: USTs and former service station area	Leaks and spills from USTs and associated fuel infrastructure (pipes, lines, bowsers etc.)	TRH, BTEX, PAH, Lead	High		
AEC2: Soils in the vicinity of the existing structure	Potentially hazardous building materials Potential usage and/or spillage of stored chemicals and from vehicles and machinery including fuels/oils, pesticides etc.	Heavy Metals and asbestos Heavy Metals, TRH, BTEX, PAH, and OC/OPP, PCB	Moderate		
AEC3: Equipment and scrap materials storage area	Potential usage and/or spillage of stored chemicals and from vehicles and machinery including fuels/oils, pesticides etc.	Heavy Metals, TRH, BTEX, PAH, PCB, OC/OPP	Low to moderate		
AEC4: Fill stockpile	Importation of potentially contaminated fill of unknown origin	Heavy Metals, TRH, BTEX, PAH, PCB, OC/OPP and asbestos	Low to moderate		
AEC5: Presence of fill of unknown origin	Importation of potentially contaminated fill of unknown origin	Heavy Metals, TRH, BTEX, PAH, PCB, OC/OPP and asbestos	Low to moderate		
Heavy Metals - Arsenic, Cadmiur BTEX - Benzene, Toluene, Ethylbe TRH - Total Recoverable Hydroca PAH - Polycyclic Aromatic Hydro PCB - Polychlorinated Biphenyls OC/OPP - Organochlorine and O					

The approximate locations of the AEC's are shown on Figure 3.

The presence of measurable concentrations of chemical substances does not automatically imply that the site will cause harm. In order for this to be the case, an exposure route must be present allowing a source to adversely affect a receptor.

5.4.2 Potential Exposure Pathways and Receptors

Based on the site observations and knowledge obtained about site activities as outlined above, potential exposure pathways and receptors identified for the assessment are summarised in Table 8.

Table 8: Potential Exposure Pathways and Receptors

Chemicals of Concern	Key Pathways	Key Receptors				
Asbestos, heavy metals	Generation of dust during earthworks which is inhaled	Onsite - Construction and site workers Offsite - Adjacent sites				
Heavy metals, TPH, BTEX, PAH, PCB, OC/OPP	Skin contact / ingestion, plant uptake, inhalation	Onsite - Construction and site workers, future site users, vegetation in landscaped/garden areas				
Heavy Metals, TPH, BTEX, PAH, PCB, OC/OPP	Surface runoff, leaching of soils, migration of groundwater plume	Offsite - Surface water and groundwater ecosystems and users, and underground services maintenance / construction workers				

Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

TPH - Total Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

PCB - Polychlorinated Biphenyls

OC/OPP - Organochlorine and Organophophorus Pesticides

5.5 Discussion

A combined Stage 1 & 2 site contamination assessment was undertaken to assess the nature and extent of soil and groundwater contamination, and to evaluate the site's suitability for a proposed VIC from a contamination perspective prior to Midcoast Council acquiring the property.

The site history study indicates that it has been used for commercial / industrial purposes since at the least the late 1950's which included the storage and dispensing of fuel from USTs. The existing building has historically been used as service station, machinery shop and tyre service centre and is likely to have closed permanently in the 2010's.

The former fuel bowsers at the front of the site have been removed (it is unknown when this occurred) however, it appears as though at least four USTs have been left in-situ; it is unknown if these were decommissioned. On this basis, it is likely that fuel has been stored in the USTs for over 60 years.

The site layout appears to have remained unchanged since 2002.

Identified AEC's included soils and groundwater in the vicinity of the existing UST tank farm and former service station area at the front of the site, soils within the vicinity of the existing building, industrial equipment and scrap materials storage area in the south-west corner and a fill stockpile located in the western part of the site.

No obvious Asbestos Containing Materials (ACM) were noted, however a full ACM assessment was not completed as part of this scope of works.

The results of the laboratory analysis of soil samples collected from targeted locations (AEC's) revealed concentrations of chemicals of concern exceeded the HILs for a Commercial/Industrial site in two samples for TRH C_6 - C_{10} fraction from borehole BH7 which was drilled just to the south-east of the two unleaded USTs in the eastern part of the tank farm area (AEC 1).

The same two samples from BH7 described above also exceeded the ecological assessment criteria for BTEX. Two other samples (SS1 and SS2) obtained from soils adjacent to the eastern side of the building exceeded the ecological assessment criteria for Benzo-a-pyrene.

Analysis of the remaining soil samples submitted for analysis reported chemical concentrations either below the laboratory limit of reporting of below the adopted health and ecological assessment criteria.

PID results indicated moderate to high hydrocarbon impact to the underlying soils within the vicinity of the tank farm with results ranging from 260 to 570ppm.

PID results from the remaining samples obtained from across the site ranged from 65 to 364 ppm indicating low to moderate hydrocarbon impact, however, these results did not reflect the results of the results of the soil sampling.

One surface soil sample (SS4) obtained from the fill stockpile in the western part of the site contained Chrysolite (white) asbestos but at levels below the laboratory Limit of Reporting (LOR) of 0.1g/kg (0.01%) which is presented as "No*" on the attached laboratory test reports.

The results of the laboratory analysis of groundwater samples collected from the three groundwater monitoring wells (MW1 to MW3) revealed concentrations of chemicals of concern:

- Exceeded the adopted guideline criteria for Total TRH, Naphthalene, BTEX and heavy metals (Chromium, Copper, Lead and Zinc) in MW1 which is located at the eastern end of the tank farm area at the front of the site near the two unleaded USTs:
- Exceeded the guideline criteria for Total TRH and heavy metals (Cadmium, Chromium, Copper, Lead, Nickel and Zinc) in MW2 which is located at the western end of the tank farm area at the front of the site near the large unleaded UST, and;
- Exceeded the adopted criteria for heavy metals (Arsenic, Cadmium, Chromium, Copper, Lead Nickel and Zinc) in MW3 which is located in the south-west of the site in front of the former tyre service centre part of the existing building.

The elevated levels of TRH, Naphthalene and BTEX in groundwater are considered to be associated with the former service station use and USTs. The elevated levels of heavy metals in groundwater are considered potentially to be associated with the historical industrial use of the site over a long period over time.

Based on the groundwater results obtained, it appears that the hydrocarbon impacted groundwater is contained to the north and north-east areas of the site.

With regard to the tank farm and former station area, the results of analyses of soil samples for hydrocarbon and lead contaminants generally indicate modest impact which appears to be limited to the vicinity of the tank farm area. However, given the concentrations of TRH and BTEX

compounds identified in the groundwater at well MW1 It is considered likely that gross soil impacts remain locally in this vicinity.

5.6 Site Assessment Conclusions and Recommendations

Should Midcoast Council choose to proceed with the acquisition of the site, it is recommended that additional site assessment works is undertaken to determine the extent of groundwater impacts and whether they pose a risk to on-site and off-site receptors (including surface water ecosystems associated with Gloucester River and the tributary creek). Following completion of additional assessment works a Remedial Action Plan (RAP) should be prepared by a suitably qualified environmental consultant which specifies the methodology for the removal, disposal and validation of the USTs and remediation of associated gross petroleum hydrocarbon impacts to soil.

The decommissioning works should be undertaken in accordance with Environment Protection Authority publication *Underground Petroleum Storage Systems* - *Guidelines for implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019* (December 2020).

It is recommended that a contractor experienced in the removal of USTs be engaged to facilitate the removal of the USTs and associated fuel infrastructure. The removal should be supervised by a suitably qualified environmental consultant and should involve PID screening of the remedial excavations followed by validation sampling in accordance with the specifications outlined in the RAP. Validation sampling of the floors and walls of the remedial excavations is required to assess the efficacy of the removal of the hydrocarbon impacted soils surrounding the USTs.

Further consideration of the requirements for the remediation and management of groundwater contamination can be made once the condition of the underground infrastructure is determined upon removal and the extent of soil contamination around the infrastructure are known.

Impacted excavation spoil should be classified in accordance with NSW EPA Waste Classification Guidelines (2014) and disposed of to a licenced landfill.

Remedial excavation should be backfilled with Virgin Excavated Natural Material (VENM) or Excavated Natural Material (ENM) under the Resource Recovery Order/Exemption under Part 9, Clause 91 to 93 of the POEO (Waste) Regulation.

A waste classification of the materials contained within the stockpile in the western part of the site should also be undertaken to facilitate the offsite disposal of the stockpile. A preliminary waste classification has been provided below in Section 6.

Should Midcoast Council proceed with the acquisition of the of the property and choose to demolish the existing building, a Hazardous Materials Survey should be undertaken by a suitably qualified consultant prior to the commencement of the demolition works.

Should unidentified fill materials be encountered during redevelopment of the property that require removal off site, assessment for a Resource Recovery Exemption under Part 9, Clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 in accordance with the Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 – the Excavated Natural Material (ENM) Order 2014, will be required.

Based on the results obtained in this investigation, it is considered that remediation works will be necessary to enable the site to be made suitable for the proposed VIC development from a

contamination perspective. Further assessment will be necessary to determine the extent of remediation works required. Site preparation works must be conducted in accordance with appropriate site management protocols and legislative requirements.

6 DISPOSAL OF MATERIALS

6.1 Preliminary Waste Classification

A waste classification for excavated materials to facilitate off-site disposal to a licensed landfill in accordance with NSW EPA (2014) *Waste Classification Guidelines* will be required during remediation should it proceed.

Table 2 of the 'Waste Classification Guidelines (2014)' nominates a suite of analytes to be tested (Column 1) and also provides the maximum concentration (CT1) allowable within the soil for classification without the need for additional toxicity characteristics leaching procedure (TCLP) testing for both general solid waste (Column 2) and restricted solid waste (Column 3) for each analyte. Should the CT1 values be exceeded, the guidelines provide a Specific Contaminant Concentration (SCC) value to allow further evaluation of contaminant concentrations in conjunction with TCLP testing.

An evaluation of the laboratory test results for the existing stockpiled material and other sampled soils against the waste classification guidelines outlined above are presented in the summary table in Appendix B. Further laboratory analysis will be required to classify other surplus soils and soils to be removed from site for remediation purposes.

Based on the preliminary results:

- The near surface soils present within AEC 2 (vicinity of the existing structure) exceed the
 criteria for Restricted Solid Waste due to an elevated B-a-p concentration in sample SS2 and
 would be classified as Hazardous Waste;
- Sample SS1 and SS2, both present with AEC 2 (vicinity of the existing structure) exceed the
 criteria for General Solid Waste due to elevated B-a-p and Lead concentrations respectively;
 and

The above preliminary waste classifications do not include TCLP testing for B-a-p and Lead. It is likely that the Hazardous and Restricted Solid Waste classifications outlined could be reduced if TCLP testing for these contaminants were to be conducted.

In addition, the Hazardous Waste and Restricted Waste Classifications outlined above are based on one elevated sample where the SCC2 value, and two elevated samples exceeding the SCC1 value. However, it is considered likely that in a remediation setting where B-a-p and Lead impacted soils have been excavated and stockpiled for disposal that this classification could be reduced, as the classification would be based on concentrations for the body of waste generated from the excavated soils. The use of statistical analysis to consider average concentrations from a data set could also be employed.

It is recommended that further waste classification testing including TCLP analysis be undertaken during site remediation works should they be undertaken.

7 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Contaminated site investigations are on data collection, judgment, experience, and opinion. By its nature, it is less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

Recommendations regarding ground conditions referred to in this report are estimates based on the information available at the time of its writing. Estimates are influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of

Regional Geotechnical Solutions Pty Ltd

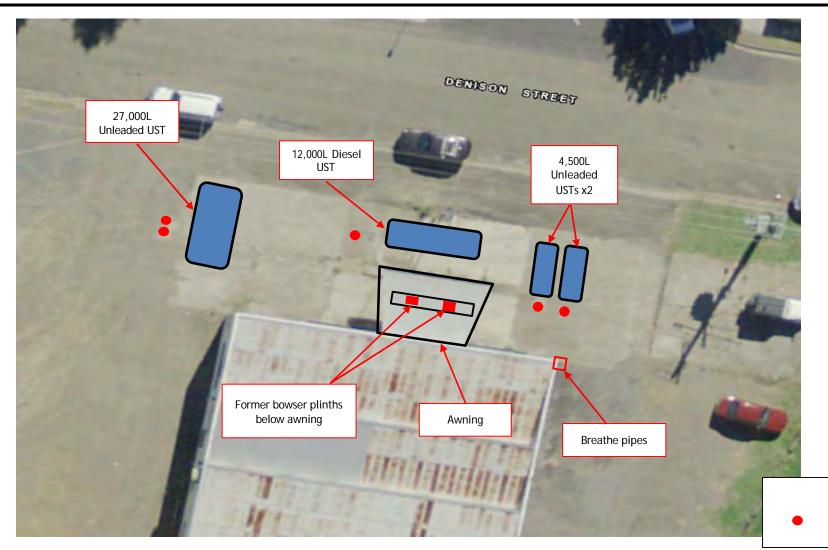
Prepared by

Andrew Hills

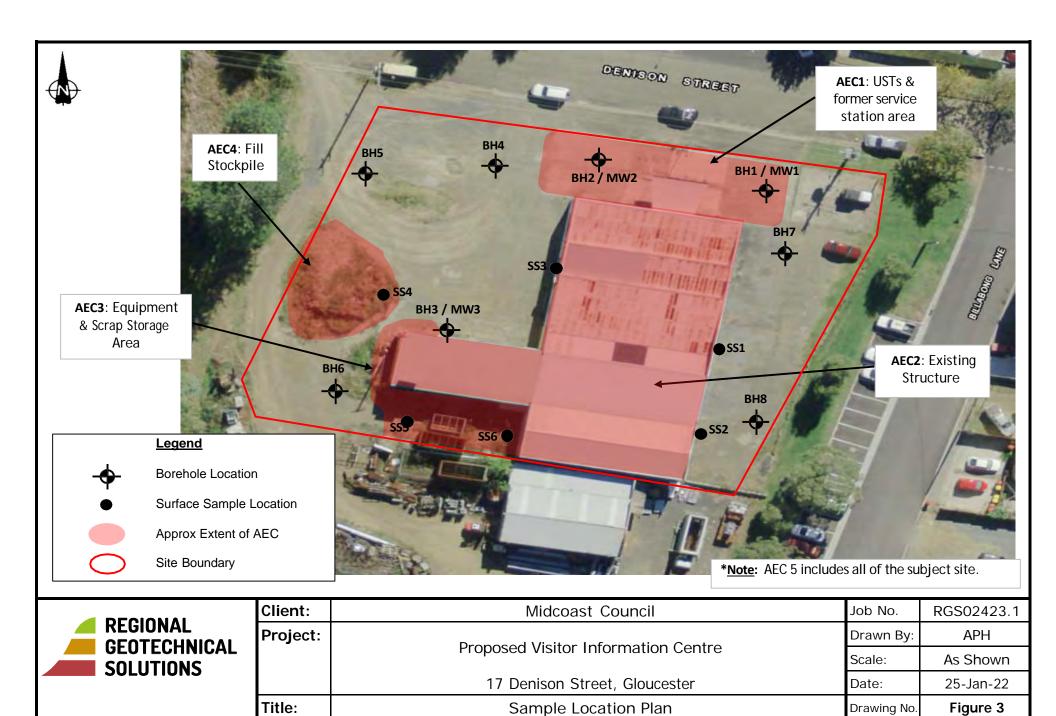
Senior Environmental Engineer

Andrew Hory

Figures



Client:	Midcoast Council	Job No.	RGS02423.1
Project:	Drange of Visitor Information Contro	Drawn By:	APH
	Proposed Visitor Information Centre	Scale:	As Shown
	17 Denison Street, Gloucester	Date:	25-Jan-22
Title:	Site Location Plan	Drawing No.	Figure 1



Client:	Midcoast Council	Job No.	RGS02423.1
Project:	Drawaged Visitor Information Contra	Drawn By:	APH
	Proposed Visitor Information Centre	Scale:	As Shown
	17 Denison Street, Gloucester	Date:	25-Jan-22
Title:	Former Fuel Services Layout Plan	Drawing No.	Figure 2

Legend

UST Fill Point

Appendix A

Results of Field Investigations

ENGINEERING LOG - BOREHOLE

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester LOGGED BY: APH

TEST LOCATION: See Figure 2 **DATE:** 9/12/21

BOREHOLE N OB H1/MW1

1 of 1

RGS02423.1

PAGE:

JOB NO:

		YPE: I			ick Mounted Drill Rig EASTING: 00 mm INCLINATION: 90° NORTHING:					DATU	ACE RL: IM:		Not Measured m AHD	
	Drilling and Sampling			Material description and profile information					1 1		Field Test			
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPT characteristics,	ION: Soil type, plasticity/ colour,minor compone	/particle nts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and addition observations
ADV					44		CONCRETE: Grey							CONCRETE PAVEMEN
•		0.00		_	D.D.		0.20m Silty CLAY: Low to	o medium plasticity, gre	ev/dark	М				ALLUVIAL SOIL
		0.30m E		_			grey, trace sand, co odour	ourse grained, strong hy	ydrocarbon					
		0.50m		0. <u>5</u>										
				_			Becoming brown/pal	e brown						
				_										
	Σ			1. <u>0</u>										
	5:00 P			_										
	9/12/2021 12:25:00 PM	1.30m		_										
	2/202	E		_										
	- 1/6	1.50m		1. <u>5</u>										
	<u></u>			_			Strong hydrocarbon	odour on groundwater						
				_			1.9 <u>0m</u>							
AD/T				2. <u>0</u>		CL	Gravelly CLAY: Lo	ow to medium plasticity, evel, coarse grained, sub	, pale prounded,					
				_			some sand, fine to	medium grained						
				_										
				2.5										
				_										
				-										
				_										
				3. <u>0</u>										
				_										
				-										
				3.5			3.50m	2.50						
				_			Hole Terminated at). JU III						
				-										
				-										
LEG Wate	END: er		1	Notes, Sar			-			ery Soft		<2		D Dry
$\mathbf{\nabla}$		er Level e and time sho	own)	U ₅₀ CBR	Bulk s	ample fo	er tube sample or CBR testing		F Fi	oft rm		50	5 - 50 0 - 100	M Moist W Wet
_	Wat	er Inflow	· 1	E ASS B	Acid S	ulfate S	sample oil Sample			ery Stiff		20	00 - 200	W _p Plastic Limit W _L Liquid Limit
Strat	ta Cha	er Outflow anges		B Field Tests	Bulk S	апре				ard riable V	\/e	>4 ery Lo	000	Density Index <15%
	tra	radational or ansitional strat	a	PID DCP(x-y)	Photoi		n detector reading (ppm) rometer test (test depth interv	al shown)	nensity	V L ME	Lo	ose		Density Index 15 - 35%
Dominave or district		finitive or disti rata change				rometer test (test depth interv ometer test (UCS kPa)	ai siluwii)	D			Medium Dense Dense Very Dense		Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%	

CLIENT: Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester LOGGED BY: APH

BOREHOLE N OB H2/MW2

1 of 1

RGS02423.1

PAGE:

JOB NO:

TEST LOCATION: See Figure 2 **DATE:** 9/12/21

Drilling and Sampling Material des						l Rig CLINATION: 90°	EASTING: NORTHING:			SURF/ DATU		RL:	Not Measured m AHD	
	Drill	ing and San	npling				Material description and	profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION characteristics,col	N: Soil type, plasticity our,minor compone		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/V	⟨ 9/12/2021 1:20:00 PM	0.30m E 0.50m		1.0 1.0 2.0 3.0		CL CL	2.30m Silty CLAY: Low to m grey/brown/pale brown moderate hydrocarbo Sandy CLAY: Low to m grey/pale brown/orange grained Clayey GRAVEL: Low to brown/pale grey, grave some cobbles, some s Hole Terminated at 3.5	medium plasticity, pa e, sand, fine to mediu w to medium plastici l, coarse grained, sub sand, fine to medium	ale im	M				CONCRETE PAVEMENT ALLUVIAL SOIL
Water	LEGEND: Water Water Level (Date and time shown) Water Inflow Water Inflow Water Inflow Water Inflow CL Clayer brown/ some of 3.50 Hole Te Some Diameter tube sample CBR Bulk sample for CBR testing Environmental sample ASS Acid Sulfate Soil Sample							shown)	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff lard riable V L MD	Lo	25 50 10 20 20 20 20 20 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 100 00se	D

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester LOGGED BY: APH

BOREHOLE NOB H3/MW3

1 of 1

Density Index 15 - 35%

Density Index 35 - 65%

Density Index 65 - 85%

Density Index 85 - 100%

Loose

Dense

Very Dense

Medium Dense

MD

D

VD

RGS02423.1

PAGE:

JOB NO:

TEST LOCATION: See Figure 2 DATE:

9/12/21 DRILL TYPE: FG101 Truck Mounted Drill Rig SURFACE RL: **EASTING:** Not Measured m **BOREHOLE DIAMETER: 100 mm NORTHING:** DATUM: AHD **INCLINATION: 90° Drilling and Sampling** Material description and profile information Field Test CLASSIFICATION SYMBOL CONSISTENCY DENSITY GRAPHIC LOG MOISTURE CONDITION Structure and additional Test Type METHOD Result MATERIAL DESCRIPTION: Soil type, plasticity/particle DEPTH RL observations SAMPLES characteristics, colour, minor components (m) (m) FILL **FILL:** Sandy Gravelly CLAY, low to medium plasticity, brown/orange, sand, fine to medium grained, gravel, coarse grained AD/T CL М 0.30m 0.50m 0.<u>5</u> ALLUVIAL SOIL **Silty CLAY:** Low to medium plasticity, brown/orange, some gravel, course grained CI 9/12/2021 2:00:00 PM 1.0 1.30m CL Clayey GRAVEL: Low to medium plasticity, ∇ F brown/orange, gravel, coarse grained, some cobbles 1.50m RG NON-CORED BOREHOLE - TEST PIT RGS02423.1 BH LOGS.GPJ <<DrawingFile>> 17/12/2021 14:19 10.03.00.09 Datgel Lab and In Situ Tool 3.5 Hole Terminated at 3.50 m LEGEND: **Moisture Condition** Notes, Samples and Tests UCS (kPa) Consistency VS Very Soft <25 D Dry Water 50mm Diameter tube sample s Soft 25 - 50 М Moist Water Level CBR Bulk sample for CBR testing F Firm 50 - 100 W Wet (Date and time shown) Environmental sample St Stiff 100 - 200 Plastic Limit Wp Water Inflow ASS Acid Sulfate Soil Sample VSt Verv Stiff 200 - 400 Wı Liquid Limit >400 ✓ Water Outflow **Bulk Sample** Н Hard Fb Friable Strata Changes Density Index <15% Field Tests Density Very Loose Gradational or

Photoionisation detector reading (ppm)

Hand Penetrometer test (UCS kPa)

Dynamic penetrometer test (test depth interval shown)

PID

HP

DCP(x-y)

transitional strata

Definitive or distict

strata change

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester

TEST LOCATION: See Figure 2

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH4

1 of 1

APH

9/12/21

RGS02423.1

		TYPE: HOLE DIAM		Truck M			Rig CLINATION: 90°	EASTING: NORTHING:			SURF/		RL:	Not Measured m AHD
	Dr	illing and Sar	npling				Material description an	d profile information				Field	Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTIC characteristics, c	ON: Soil type, plasticity/ colour,minor componer		MOISTURE	CONSISTENCY DENSITY	TestType	Result	Structure and additional observations
RG LIB 1.05.0.GLB Log RC NON-CORED BOREHOLE - TEST PIT RGS02423.1 BH LOGS.GFJ <-DrawingFiles> 17/12/2021 14:19 10.03:00.09 Datgel Lab and in Stru Tool AD/T	0.30m CL Sitty CLAY: I brown/orange 0.50m 1.00m Becoming pale 1.50m 1.50m 1.60m 1.					plasticity, brown/orat sand, fine to medium 0.25m Silty CLAY: Low to brown/orange, some Becoming pale brown	medium plasticity, gravel, course grained	im ined,	M				FILL (HARDSTAND) ALLUVIAL SOIL	
RG LIB 1.05.0.GLB Log RG NON-CORED BOREHOLE - TEST PIT RGS02423.1B	GEND: Atter Water Level (Date and time shown) Water Inflow Water Outflow Tata Changes Gradational or Transitional strata Definitive or distict DCP(x-y) DVD Ass Acid Street PID Photo DCP(x-y) DCP(x-y) Pind Tests PID Photo DCP(x-y) DCP(x-y) Pind Tests PID Photo DCP(x-y) DCP(x-y) Pind Tests PID Photo DCP(x-y) DCP(x-y) DCP(x-y) Pind Tests PID Photo DCP(x-y) DCP(x-y) DCP(x-y) Pind Tests PID Photo DCP(x-y) DCP(x-y) DCP(x-y) DCP(x-y) Pind Tests PID Photo DCP(x-y) DCP(x-y) DCP(x-y) DCP(x-y) DCP(x-y)					Diamet ample for nmental ulfate S ample onisatio ic pene	er tube sample or CBR testing sample oil Sample oil Sample in detector reading (ppm) trometer test (test depth interva	al shown)	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff lard riable V L MD D VD	Lo Me De	25 50 10 20 >40 >40	- 50 - 100 0 - 200 0 - 400 00 ose	D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit Density Index <15% Density Index 15 - 35%

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester

TEST LOCATION: See Figure 2

DATE: 9/12/21 SURFACE RI Not Measured m

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH5

1 of 1

APH

RGS02423.1

FG101 Truck Mounted Drill Rig

	Drilling and Sampling Materia						Rig CLINATION: 90°	EASTING: NORTHING:			SURF.		RL:	Not Measured m AHD
	Dril	ling and San	npling				Material description an	d profile information				Field	l Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTIC characteristics,c	DN: Soil type, plasticity/ olour,minor componer		MOISTURE	CONSISTENCY DENSITY	TestType	Result	Structure and additional observations
AD/T	Not Encountered	0.30m E 0.50m		0. <u>5</u>		CL CL	brown, some gravel,	nedium plasticity, brown course grained o medium plasticity, fine to medium grained		M				ALLUVIAL SOIL
				1. <u>5</u>										
-				-	V////		Hole Terminated at 1.	60 m				\vdash		
0.09 Datgel Lab and In Situ To				2.0										
17/12/2021 14:19 10.03.00				2. <u>5</u>										
sS.GPJ < <drawingfile>></drawingfile>				3. <u>0</u>										
TEST PIT RGS02423.1 BH LOC				3. <u>5</u>										
RG NON-CORED BO	EGEND: Active Cate and time shown Water Level (Date and time shown) Water Inflow Water Outflow Gradational or transitional strata Definitive or distict strata change December 2 December 3 December 4 December 4 December 5 December 6 December 6 December 6 December 7 Dec				50mm Bulk s Enviro Acid S Bulk S S Photo Dynam	Diamet ample for nmental sulfate S sample onisatio ic pener	er tube sample or CBR testing sample oil Sample in detector reading (ppm) trometer test (test depth interva	l shown)	S S F Fi St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff ard riable V L MC D VD	Lo M D	<25 50 100 200 >40 ery Loc	- 50 - 100 0 - 200 0 - 400 00 Dense	D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit Density Index <15% Density Index 15 - 35%

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester

TEST LOCATION: See Figure 2

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH6

1 of 1

APH

9/12/21

RGS02423.1

		YPE: OLE DIAN		1 Truck N R: 100 m			CLINATION: 90°	EASTING: NORTHING:			SURF/ DATU		· 、	Not Measured m AHD
	Dril	ling and San	npling				Material description a	nd profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPT characteristics,	ION: Soil type, plasticity/ colour,minor componer	/particle nts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered			-		CL	FILL: Gravelly CL/brown/orange, grav	AY, low to medium plas el, coarse grained, som	ticity, e roots	М				FILL
	Not Enc	0.30m E 0.50m		- 0. <u>5</u> - -		CL		medium plasticity, brown	n/dark					TALLUVIAL SOIL
		1.30m E 1.50m		1. <u>0</u> 1. <u>5</u>			Becoming pale brow	n						
_							1.60m Hole Terminated at	1 60 m						
				-			Tiolo Tominatod at	1.00 111						
				-										
				2. <u>0</u>										
				_										
				-										
				-										
				2. <u>5</u>										
				2. <u>0</u>										
				-										
				_										
				3. <u>0</u>										
				-										
				-										
				_										
				3. <u>5</u>										
				-										
				-										
				-										
-				Ned 2				,	0	<u> </u>		<u> </u>	00 # 7	Majatras Cara III
LEG Wat	END: er			Notes, Sai			_		Consist VS	Very Soft		<2	CS (kPa 25	D Dry
$\overline{\mathbf{Y}}$	Wat	er Level		U ₅₀ CBR			er tube sample or CBR testing		S F	Soft Firm			5 - 50 0 - 100	M Moist W Wet
_	,	te and time sh ter Inflow	own)	E	Enviro	nmenta	sample		St	Stiff		10	00 - 200	W _p Plastic Limit
—		er Outflow		ASS B	Bulk S		oil Sample		VSt H	Very Stiff Hard			00 - 400 400	W _L Liquid Limit
Stra		anges redetional or		Field Tests	s			-	Fb Density	Friable V	Ve	ery Lo	ose	Density Index <15%
	tra	radational or ansitional strat	ta	PID	Photoi		n detector reading (ppm)	ial abaum)		L	Lo	oose		Density Index 15 - 35%
		efinitive or dist rata change	tict	DCP(x-y) HP			trometer test (test depth interv ometer test (UCS kPa)	ai snown)		MD D		edium ense	n Dense	Density Index 35 - 65% Density Index 65 - 85%
	Ji	J 190								VD	Ve	ery De	ense	Density Index 85 - 100%

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester

TEST LOCATION: See Figure 2 DATE: 9/12/21

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH7

1 of 1

APH

RGS02423.1

DRILL TYPE: **EASTING:** SURFACE RL: FG101 Truck Mounted Drill Rig Not Measured m

NORTHING: DATUM: BOREHOLE DIAMETER: 100 mm INCLINATION: 90° AHD

		Drill	ing and Sam	pling				Material description and profile information				Field	Test	
	METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor compone	/particle ents	MOISTURE	CONSISTENCY DENSITY	TestType	Result	Structure and additional observations
	AD/T	Not Encountered	0.20m E 0.40m		-		CL	FILL: Sandy Gravelly CLAY, low to medi plasticity, brown/orange/dark brown, grave grained, sand, fine to medium grained	um el, coarse	М				FILL (HARDSTAND)
		NG	1.30m E 1.50m		1. <u>0</u>		CL	Silty CLAY: Low to medium plasticity, brown/orange/dark brown, some gravel, cougrained Strong hydrocarbon odour appearing	urse					ALLUVIAL SOIL
09 Datgel Lab and In Situ Tool			E				GC	2.10m Clayey GRAVEL: Low to medium plasticity brown/orange	,					
< <drawngfile>> 17/12/2021 14:19 10.03.00.09 Datgel Lab and In Situ Tool</drawngfile>					- 2. <u>5</u> - -			Hole Terminated at 2.20 m						
					3. <u>0</u> - -									
ON-CORED BOREHOLE - TEST PIT RGS02423.1 BH LOGS.GPJ		3.5												
30RE		END:		<u> </u>	Notes, Sa	mples ar	nd Test	<u>s</u>	Consiste				S (kPa	
ZED E	Wate				U ₅₀	50mm	Diamet	ter tube sample	1	ery Soft oft		<2 25	5 - 50	D Dry M Moist
JON-CO	\blacksquare		er Level e and time sho	own)	CBR E	Bulk sa	ample f	or CBR testing I sample	F F	irm tiff		50	- 100 0 - 200	W Wet W₀ Plastic Limit

LEG	END:	Notes, Sa	imples and	Tests			Cons	istency		UC	S (kPa)	Moistu	ure Condition
<u>Wat</u>	er						VS	Very So	oft	<2	5	D	Dry
4		U ₅₀	50mm Dia	ameter	tube sample		S	Soft		25	- 50	M	Moist
=	Water Level	CBR	Bulk sam	ple for (CBR testing		F	Firm		50	- 100	W	Wet
5	(Date and time shown)	E	Environm	ental sa	ample		St	Stiff		10	0 - 200	Wp	Plastic Limit
<u></u>	Water Inflow	ASS	Acid Sulfa	ate Soil	Sample		VSt	Very St	iff	20	0 - 400	WL	Liquid Limit
	Water Outflow	В	Bulk Sam	ple			Н	Hard		>40	00		
Stra	ta Changes						Fb	Friable					
5	Gradational or	Field Tes	ts_				Dens	ity \	/ \	ery Loc	ose	Density	y Index <15%
<u> </u>	transitional strata	PID	Photoioni	sation o	detector reading (ppm)			l		oose		Densit	y Index 15 - 35%
2	Definitive or distict	DCP(x-y)	Dynamic p	enetro	meter test (test depth inte	erval shown)		1	MD N	1edium	Dense	Densit	y Index 35 - 65%
9	strata change	HP	Hand Pe	netrom	eter test (UCS kPa)			[) C	Dense		Densit	ty Index 65 - 85%
2	Strata Grange							\	/D \	ery De	nse	Densit	y Index 85 - 100%

Midcoast Council

PROJECT NAME: Proposed Visitor Information Centre

SITE LOCATION: 17 Denison Street, Gloucester

TEST LOCATION: See Figure 2

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH8

1 of 1

APH

9/12/21

RGS02423.1

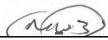
		YPE: OLE DIAN		1 Truck N R: 100 m			CLINATION: 90°	EASTING: NORTHING:			SURF/ DATU			Not Measured m AHD
	Dril	ling and Sam	npling				Material description a	nd profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPT characteristics,	ON: Soil type, plasticity/pcolour,minor componer	particle nts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
Ę	70						0.05m BITUMEN: Black			M				PAVEMENT SEAL
AD/T	Not Encountered			-		CL	FILL: Sandy Grave	lly CLAY, low to mediun nge, sand, fine to mediun	∕ n n					FILL
	ncon	0.30m			\bowtie	L	_{0.30m} grained							
	lot E	E		_		CL	Silty CLAY: Low to brown/orange/dark b	medium plasticity, prown, some gravel, cour	se					ALLUVIAL SOIL
	_	0.50m		0. <u>5</u>			grained							
				-										
				-										
				1. <u>0</u>										
				-										
		1.30m		-										
				-										
		E 1.50m		1. <u>5</u>										
							1.60m Hole Terminated at	1 60 m						
				-			Tiole Terrimated at	1.00 111						
				-										
				2. <u>0</u>										
				_										
				-										
				-										
				2. <u>5</u>										
				_										
				-										
				-										
				3. <u>0</u>										
				_										
				-										
				3. <u>5</u>										
				_										
				-										
				-										
	END:			Notes, Sa	mples a	nd Test	<u>5</u>		Consiste				CS (kPa	
Wat		er Level		U ₅₀			er tube sample		s s	/ery Soft Soft		25	25 5 - 50	D Dry M Moist
Ť	(Da	te and time sh	own)	CBR E			or CBR testing sample			Firm Stiff			0 - 100 00 - 200	W Wet W _p Plastic Limit
		ter Inflow er Outflow		ASS B		ulfate S	oil Sample		VSt \	ery Stiff		20	00 - 400 100	1 '
	ta Ch	anges .				J IPIG		<u> </u>	Fb F	riable				Denoite la description
		radational or ansitional strat		Field Tests PID		onisatio	n detector reading (ppm)		Density	V L		ery Lo oose	ose	Density Index <15% Density Index 15 - 35%
	De	efinitive or dist		DCP(x-y) HP			trometer test (test depth interv ometer test (UCS kPa)	al shown)		ME D		edium ense	n Dense	Density Index 35 - 65% Density Index 65 - 85%
	St	rata change					(/			VD		ery De	ense	Density Index 85 - 100%

				mi	211			REGIC	ΝΔΙ
GROUNDWATER SAMPI	ING FIFI	D SHFFT			_'				ECHNICAL
J	;							SOLU	
CLIENT: $l_{i,f} > (('/>/>/>/>/>/>/>/>$	_X- <i>I</i>	Vv1c	-r'		_			Date: /')	// h ,1
:								Ι,,	
PROJECT "	17r-	· Z / L/,,-	>)(/ r,	/ + - 6 // - 8	40-	10 0		I-I-NIII	CV11 111 /
LOCATION: I= / T	.J1,,r	,,	-)(·· / 1,	(b <c <i="">U_<</c>	710-				EV"L'"I <i>J</i>
	/IA/ I		1					Sampler:	A./,t'
Field Measurements	-0				_				
Top of Casine (TOC):	f-7	7)	m (TO A			f Casine (TOC)	:		mAHD
Depth to Groundwater:	/-		m(TO()			facetlevation		+++	mAHD
Depth to Groundwater:		.40	m(bgs)			dwater Elevation		I	mAHD
Well Depth:		.\$" o	m(TOC)			Vapoursin we			ppm
Well Depth:			m (bgs)		•	ase Separated	•	\	m
Thickness of Groudnwater Column:	I	• /-C	m		Thickness of F	Phase Separate	ed layer		m
Well Purging Purge Method:	7=-	ħ/-					Otant Duni		
7 - (-)	<i>i>:.,</i> ∖t:]l	,IV-					Start Purge: ,Z End Purge:	;,0 S- f) A ?:h /	Ť
	\t.]I								
Field Measurement Device:	00/	1_	w7ti -				Total Volume Purge	ed: 4 - <	L
Time	Temp (•C)	EC(µS/cm)	pН	DD (mg/L)	Purge Volume (L)	Water Level (TOC)	Comments (Appearance, Odou	r, etc.)
2 0 (>fvt	1.U-'l- '	t J41	S.4-f-	<t·t)< td=""><td>{-</td><td>1,(</td><td>9K,./2</td><td>1,, .c/v-oco</td><td>,,Lo</td></t·t)<>	{-	1,(9K,./2	1,, .c/v-oco	,,Lo
Ĭ				/			,-, <i>[]</i> -		<;faa
						9			,J
						7	ofx1		
2-,? -;L;J	rlf, '{		·i -ci'b	1 .4.0	1 <			<i>)</i>	
_ ,. ,_,o	, 9, [t 0 , 0	1 7.0	, ,		//	L(
							- 11	=(
″, • OCTo	?,-t,.1-3	G	C-t, · ○ Í	7,70	(\$	€ :\"			
1, 40010	:,-1,.1-0	0	U-1,·0 I	7,70	(0	V \	17		
							I{	II	
Well Sampling									
Sampling Material: $\mathcal{M}C\mathcal{T}$	"'ee-t 1	er		Material:					
Start Sampling: <	(f)''F,f			Finish Samplin	g: a	&il'			
FieldComments	Ī					V			
Well Head Inegrity:		G-(o.,.d						
Samples Filtered:			17.15,						
Weather Conditions:			t:::n,.,,	- A	A				
	()ı	1 () t<'	fit-J R				J4.,,F	I.,J II	•

D/If

I<+-lo .ON..J pI-

) -S-]


142-7

Mur

GROUNDWATER SAMPL	ING FIEL	D SHEET	-					GE		HNICAL
*******	/							SO	I h-	
CLIENT: TIV; - I				<u>lh.</u>	/ n	JI,.n-		Date:		
PROJECT:	tQ	<i>(/,</i>	',/ '/.\$-,	2a_,f,. ' ((n.			Job No:	/),,,.:.,	-
LOCATION: '=a V Well Number:	(,	a.,,	\ - /\.\$2	2a_,t,. (,	-:: -		Sampler:		N1 -
vveii number:								Sampler	/ [7
Field Measurements		e				l i	- •		I	
Top of Casing (TOC):	-,0,.	<i>1</i> –	m		Top	i of Cas ng (TOC):		TIV/	4	mAHD
Depth to Groundwater.	, 0, 1		III (10C)			nace E eval on	_	01072	_	шАПЬ
Depth to Groundwater:	,,,,,,	τ,	in (102s)		Grou	ndwater flev o	n			mAHD
Well Depth:	_	0	m (TOC)		Or ani	c Vapours In.we	ell			ppm
Well Depth:	3.	. (J	m(bgs)		Depth to P	hase Separated	Layer	1.1		m
Thickness of Groudnwater Column:	t,	(OS'	m		Thickness of	Phase Separate	ed Layer			m
Well Purging /I	*			•		•	•	_		•
Purge Method: /f(C, ttC		. r,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Start Purge:	'l <i>t</i> 5		
Field Measurement Device. 4=			A†'f\J\;', 6 4-				End Purge:	<u>'Lt5</u> 2- '	tf'A	,
	90	_ 0,	11:,4:,;,yji				Total Volume Purged:		. •	1
Time	Temp (•C)	EC (µS/cm)	J-glo	DO (mg/L)	Purge Volume (L)	Water Level (TOC)	Commenis (A	,	Odour, e	tc.)
J "3 pv"	II, <i-"lt< td=""><td>151.91</td><td></td><td>70</td><td>1.5</td><td>1.12</td><td>J. (,</td><td>11</td><td></td><td>,</td></i-"lt<>	151.91		70	1.5	1.12	J. (,	11		,
<u> </u>	u, u 200	.01101		0			0.7()		U	
								_	T	>(
Z'-"				-				Jto(.	,'.)	<'?.,
Z-'.'J -1///A-i	: 0" 70	-f"O	_	6 + D	/	<i>l</i> •′:†0			•••	
- I//IA-I	j_S"-70	-1 C	<:'.:r-i:> C	6-t.P	(.·::,,.	14.10	'-f			
' / ' '	1:71=		/	- " 6-0r		4 /			"	
-;.·,:_j/p	'j/'5-v	>G;b	(_;,.oe,	>"-6Cr	(,	<i>t</i> · {.;; <i>t</i> -	t(
I							Α			
							t9rJ!.&t- +			
I							×ru> er,'tl	(A?	_	
							er,'tl	7	7	
							I			
Well Sampling										
Samplin ater@I: //1/4 R	? ftC	.:.:1	lft r	Material:	_ n 1	fv"z,				
	; 4,,<:::;"/) -	/	,1	Finish Sampling:		- 0//1				
Field Comments	, 1,,,/) - I			30	/	0// 1	- ,	\		
	I	(() _{V/} <f>Oc/\</f>							
Well Head Inegrity:		, -	у				<u> </u>			
Samples Filtered:				fr	<u>, </u>		-			
Weather Conditions:			Н	1.0	ī	/				
vvecauter Continuoris.	•		**	, 0=	'			-7		

f){Lf = 145.6 nr ph

GROUNDWA	ATER SAMP	LING FIEL	.D SHEET						REGION GEOTE SOLUT	ECHNICAL
CLIENT:	/U';d	lern,;	<i>T</i> ;	# 7	• • • • • • • • • •	• • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •		
LOCATION:	V.9	1,/ <u> </u>	1		(c	:y/	r J	_	Job No: a't	ct-I /
Well Number:	- , -	rtl	=/	/// - // 1	- (-	<i></i>				A-,,4
Field Measuremer	nts		-						Sampler:	Λ-,,4
Top of Casing (TO	OC):	,,r,;;	- /		1				1 . 1	
Depth to Groundy	water:	 	<u>-ro::r</u>	m (TOC)		l op Si	o of Casing (TOC)	:	<i>₩it</i> -	mAHD mAHD
Depth to Groundy	water:	/ ** 7	7 – [m (bgsl		Grou	undwater Elevatio	on		mAHD
Well Depth:		\$-	<+ <i>0</i> ·	m(TOC)		Orga	anic ∀apours in w	ell		ppm
Well Depth:		'Z	. \$'D	m (bgsl		Depth to	Phase Separated	Layer		m
Thickness of Grou	udnwater Column:	1-	7-<	m		Thickness	of Phase Separate	ed Layer	1 1 3	m
Well Purging	Л	-								
Purge Method:	rtt;;,1;	. rfvc, 	77		1			Start Purge:		
Field Measuremer	nt Device:			<i>t</i> , ·	1			End Purge:	3. <i>l</i> :{;: { v-	-,
r ioid modearonioi	1:\-	f:-qi'2	.q A	il\.C.				Total Volume Purge	:a: =:.&1:=	L
Т	ime	Temp (°C)	EC (µS/cml	рН	DO (mg/LI	Purge Volum (LI	Water Level (TOCI	Comments	(Appearance, Odou	r, etc.)
6 /)1r-,	7	α	•£0,,	-(*2-	-	(100)	S!, '-z.L Y	-cc	<u>'f</u> -
0 , ,	1 ,	-	- 00	~~,,	`			Stp		
''' 2Z.</td <td>f) /\D</td> <td>7£1-</td> <td>t irr</td> <td>197</td> <td>g,cv</td> <td>Qcs</td> <td><u> </u></td> <td></td> <td>Ar c I"</td> <td>/ _ J,</td>	f) /\D	7£1-	t irr	197	g,cv	Qcs	<u> </u>		Ar c I"	/ _ J,
\/2. Z.	V	7	· · · (1 37				, , _,		
								1.	T>	
							<u> </u>			
		-		-s-ct'i	141	Ci				
Lji1)r	::5,	k/A J.	fl/	0 017		0		4.	<:1	
		,-								
								ro /s	-	
								Tob is	<u> </u>	1-1
									(l , -/	1-ι
								/J'l-i,(I	(,,II_	
								,		
WellSampling							1		_	
		7.4.7		2 "				,		
Sampling Materia	(,	,,Pt'	,A ," I	:-	Material: Finish Sampling	d-	<i>ī.</i>		. ()	
Start Sampling:	,r.1 <u>,</u> , , , , , , , , , , , , , , , , , ,	,, i t			Initiati Camping		1			
Field Comments			788		:			_		
Well Head Inegrity:			()	1,,. e,f	A = A	<u></u>	14			/4
Samples Filtered:					71 Z W	_	,	-,,#.		. 1 e
Weather Condition	IS.			-	A v.J7	4Wtv-7			3,4	·
Other:		TIV	V lfi	f- t	/JL>,	1 2 s1	<i>i.l</i>	, , , , , , , , , , , , , , , , , , ,		
		0	00	4	1 f 1	1	nup	Ť.		
		8	M	-)				~ .		
					/Lf3	U				

Appendix B

Laboratory Test Result Sheets

Client: Midcoast Council Job No. RGS02423.1

APH 14.01.22 Date:

Project: Stage 1 & Stage 2 Site Contamination Assessment

Location: 17 Dension Street, Gloucester

			Asbestos		TOTAL REC	OVERABLE H	YDROCARBO	NS		PAH			ос	OP HEAVY N Pesticides As Cd Cr# Cu				METALS				
Location	DEPTH (m)	MATERIAL	Presence	C6-C10	C10-C16	C16-C34	C34-C40	TOTAL 10-40	Total	В-а-р	BTEX	PCB	Pesticides	Pesticides	As	Cd	Cr#	Cu	Pb	Ni	Zn	Hg
BH1	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	< 0.05	<0.2	11	<1	13	18	20	9	42	<0.1
BH1	1.3- 1.5	Alluvium		84	60	<100	<100	60	60	<0.5	0.6	<0.1	< 0.05	<0.2	8	<1	11	15	15	9	45	<0.1
BH2	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	11	<1	12	20	19	9	40	<0.1
BH2	1.3 - 1.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	8	<1	12	20	13	9	43	<0.1
BH3	0.3 - 0.5	Fill		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	< 0.05	<0.2	12	<1	10	16	32	7	50	<0.1
BH3	1.3 - 1.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	8	<1	12	15	13	8	33	<0.1
BH4	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	12	<1	10	12	20	7	35	<0.1
BH4	1.3 - 1.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	7	<1	11	16	10	8	38	<0.1
BH5	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	10	<1	12	19	17	8	38	<0.1
BH6	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	< 0.05	<0.2	12	<1	11	14	25	8	39	<0.1
BH6	1.3 - 1.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	8	<1	11	15	13	9	42	<0.1
BH7	0.2 - 0.4	Fill		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	12	<1	12	16	21	8	40	<0.1
BH7	1.3 - 1.5	Alluvium		492	<50	<100	<100	<50	<50	<0.5	125	<0.1	<0.05	<0.2	9	<1	12	16	16	9	51	<0.1
BH7	1.8 - 2.0	Alluvium		614	80	<100	<100	80	80	<0.5	139	<0.1	<0.05	<0.2	13	<1	10	18	16	8	52	<0.1
BH8	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	12	<1	13	18	22	10	44	<0.1
BH8	1.3 - 1.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	8	<1	11	16	14	10	50	<0.1
SS1	0.0 - 0.2	Fill	No	<10	<50	620	400	1020	<50	1.6	<0.2	<0.1	0.07	<0.2	8	<1	9	24	52	7	1790	<0.1
SS2	0.0 - 0.2	Fill	No	54	60	1240	470	1770	60	4.4	<0.2	<0.1	0.17	<0.2	8	<1	39	84	197	31	6340	<0.1
SS3	0.0 - 0.2	Fill	No	<10	<50	<100	170	170	<50	<0.5	<0.2	<0.1	<0.05	<0.2	6	<1	7	28	15	7	109	0.2
SS4	0.0 - 0.2	Fill (stockpile)	No*	<10	<50	340	190	530	<50	<0.5	<0.2	<0.1	<0.05	<0.2	8	<1	15	158	91	14	208	<0.1
SS5	0.0 - 0.2	Fill	No	<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	9	<1	19	112	72	15	192	<0.1
SS6	0.0 - 0.2	Fill	No	<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	10	<1	8	39	40	8	124	<0.1
MW3		Sludge		<10	<50	<100	<100	<50	<0.5	<0.5	<0.2				<5	<1	5	6	6	3	20	<0.1
D1 (duplicate of BH1)	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	11	<1	14	19	16	10	45	<0.1
D2 (duplicate of BH4)	0.3 - 0.5	Alluvium		<10	<50	<100	<100	<50	<50	<0.5	<0.2	<0.1	<0.05	<0.2	12	<1	10	12	21	7	39	<0.1
RINSATE		Water		<20							<1											
D1 RPD %			•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.4	5.4	22.2	10.5	6.9	0.0
D2 RPD%				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	0.0	10.8	0.0
Health Based S	Soil investiga	tion Level*:	0.001% (w/w)	310 (0-1m) 480 (1-2m)	NL	NL	NL	NL	4000	40	NL	1	45	45	3000	900	3600	240000	1500	6000	400000	730
Health Screeni	ng Level (HS	SL)**		310	NL	NL	NL	NL														
Ecological Scre	eening Level	(ESL)***		215	170	1700	3300	NL		1.4	75				Coarse grained soil in mg/kg							
				215	170	2500	6600	NL		1.4	95					Fine g	rained soil in	mg/kg				

NL

LOR

RPD

CRITERIA:

* Health Based Investigation Levels for Commercial/Industrial D site (NEPM 2013)

** Health Screening Level (F1) for commercial/industrial land use and fine grained soil (clay), 0 - 1m & 1 -2m depth

*** Ecological Screening Level for commerical/industrial land use

Chromium VI

Speciation testing confirmed only Chromium III present

No* - No asbestos found, at the reporting limit of 0.1g/kg. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.

Denotes concentration exceeds health based guideline for Commercial/Industrial D site Denotes concentration exceeds ecological guideline for Commercial/Industrial D site Denotes concentration exceeds health and ecological based guideline for Commercial/Industrial D site

Limit of Reporting Relative Percent Difference

No Limit available

Summary Table - Comparison of Groundwater Chemical Analysis Results (concentrations in ug/L) for 'Aquatic Ecosystems'

Client: Midcoast Council Job No. RGS02423.1

Project: Proposed Vistor Information Centre Location: 17 Denison Street, Gloucester

		TOTAL REC	COVERABLE I	HYDROCARBO	ONS		Nambhalasa		В	EX				DISS	SOLVED HEAV	/Y METALS (n	ng/L)		
Location	C6-C10	C10-C16	C16-C34	C34-C40	TOTAL 10-40	Total PAH	Naphthalene (PAH)	Benzene	Toluene	Ethyl- benzene	Xylenes (Total)	As	Cd	Cr**	Cu	Pb	Ni	Zn	Hg
MW1	111000	144000	10600	310	155000	3260	561	18800	23500	3990	20400	0.01	<0.0001	0.003	0.009	0.01	0.004	0.029	<0.0001
MW2	70	210	1320	<100	1530	64.6	<5	2	10	3	18	0.007	0.0006	0.013	0.183	0.031	0.049	0.765	0.0002
MW3#	<20	<100	<100	<100	<100	<0.5	<5	<1	<2	<2	<2	0.362	0.0102	4.18	4.82	5.49	2.83	17.6	<0.0010
DIAM (Durille As - CAMAM)	44000	40000	0040	400	F0400		F04	40700		4000									
DW1 (Duplicate of MW1) RINSATE2	110000	48800	3640	<100	52400		531	18700	28800	4060	20800								
	<20	-						<1	<2	<2	<2								
TRIP SPIKE		-						14	15	14	30								
TRIP BLANK		-						<1	<2	<2	<2								
DW1 - RPD%	0.9	98.7	97.8	102.4	98.9		5.5	0.53	20.3	1.7	1.9								
CRITERIA (ANZECC 2000) - 95% Protection of Species for Aquatic Ecosystems - Freshwater	NL	NL	NL	NL	NL	NL	16	950	NL	NL	550	0.024	0.0002	0.001	0.0014	0.0034	0.011	0.008	0.0006
Recreational Human Health Screening Criteria	NL	NL	NL	NL	NL	NL	NL	10	8000	3000	6000	0.05	0.005	0.05	1.0	0.05	0.1	5.0	0.001
Health Screening Level (HSL)^	NL	NL	NL	NL	NL	NL	NL	30000	NL	NL	NL								
Dutch Intervention Level					600						350								
NSW Clean Waters Act					10,000*														

NOTES:

Denotes concentration exceeds adopted guideline criteria

NL No Limit available

*TRH Criteria based on NSW Clean Waters Act criteria for oil and grease entering waters

LOR Limit of Reporting

** Guideline for CrVI, no limit available for CrIII

N/D Not Detected

- Total heavy metals rather than dissolved metals reported due to field filtering not being possible

^Health Screening Level (F2) for commercial/industrial land use and fine grained soil (clay), 2 - 4m depth

CERTIFICATE OF ANALYSIS

Work Order : **ES2145800**

: REGIONAL GEOTECHNICAL SOLUTION

Contact : Andrew Hills

Address : 44 BENT STREET

WINGHAM NSW, AUSTRALIA 2429

Telephone : +61 02 6553 5641

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Order number : ----

Client

C-O-C number

No. of samples analysed

Sampler : ----

Site : 17 DENISON STREET, GLOUCETER

: ----

Quote number : EN/222
No. of samples received : 25

Page : 1 of 24

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 15-Dec-2021 09:37

Date Analysis Commenced : 17-Dec-2021

Issue Date : 22-Dec-2021 17:16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

. 25

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Brendan Schrader
Laboratory Technician
Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar
Organic Coordinator
Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar
Organic Coordinator
Sydney Organics, Smithfield, NSW
Ivan Taylor
Analyst
Sydney Inorganics, Smithfield, NSW

Page : 2 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request.

In house developed procedures

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005T: Poor precision was obtained for Znic on sample ES2145800 #21. Confirmed by re-digestion and reanalysis.
- EP071: Results of sample BH1 1.3-1.5 have been confirmed by re-extraction and re-analysis.
- EP068: Positive results have been confirmed by re-extraction and re-analysis.
- EG035: Positive Mercury result ES2145800 #19 has been confirmed by reanalysis.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION


Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.3-0.5	BH1 1.3-1.5	BH2 0.3-0.5	BH2 1.3-1.5	BH3 0.3-0.5
		Sampl	ling date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-001	ES2145800-002	ES2145800-003	ES2145800-004	ES2145800-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	2 105-110°C)							
Moisture Content		1.0	%	18.7	16.9	24.7	17.3	22.6
EG005(ED093)T: Total Metals by I	CP-AES							
Arsenic	7440-38-2	5	mg/kg	11	8	11	8	12
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	13	11	12	12	10
Copper	7440-50-8	5	mg/kg	18	15	20	20	16
Lead	7439-92-1	5	mg/kg	20	15	19	13	32
Nickel	7440-02-0	2	mg/kg	9	9	9	9	7
Zinc	7440-66-6	5	mg/kg	42	45	40	43	50
EG035T: Total Recoverable Mercu	urv by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls	(PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticide	es (OC)		, j					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 4 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Page : 5 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

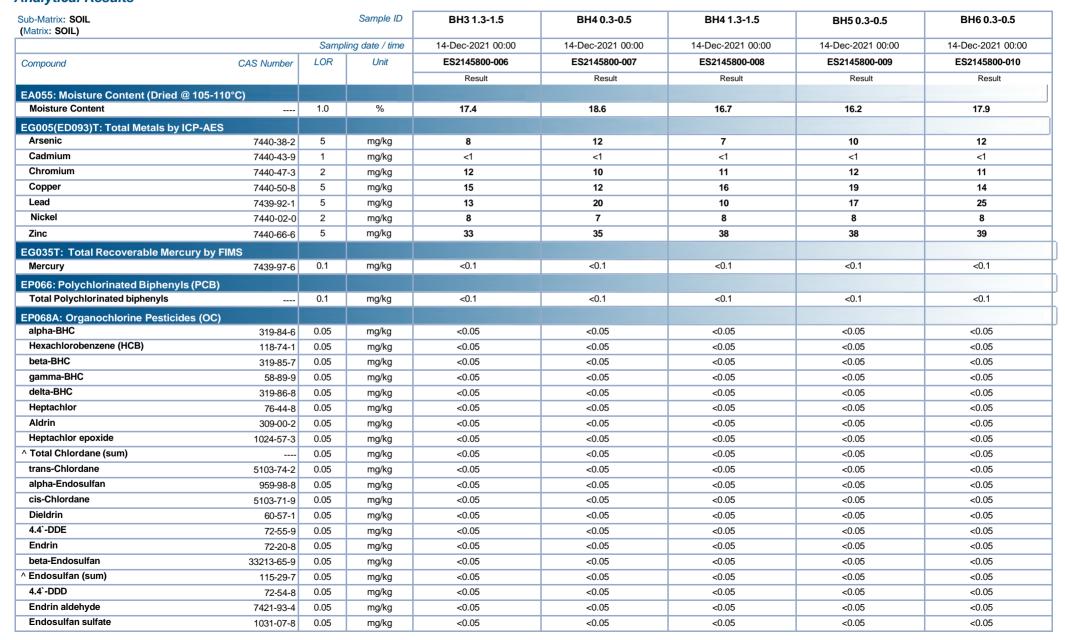
ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.3-0.5	BH1 1.3-1.5	BH2 0.3-0.5	BH2 1.3-1.5	BH3 0.3-0.5
		Sampl	ing date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-001	ES2145800-002	ES2145800-003	ES2145800-004	ES2145800-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Conti	nued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocark	oons							
C6 - C9 Fraction		10	mg/kg	<10	67	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	90	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	90	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	Fraction	s					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	84	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	83	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	60	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	60	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	60	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	0.6	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 6 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

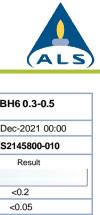

ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.3-0.5	BH1 1.3-1.5	BH2 0.3-0.5	BH2 1.3-1.5	BH3 0.3-0.5
		Sampl	ling date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-001	ES2145800-002	ES2145800-003	ES2145800-004	ES2145800-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	0.6	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	0.6	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	96.4	107	124	117	80.4
EP068S: Organochlorine Pesticide	e Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	95.7	91.0	95.3	98.1	78.7
EP068T: Organophosphorus Pest	icide Surrogate							
DEF	78-48-8	0.05	%	113	101	112	110	92.5
EP075(SIM)S: Phenolic Compound	d Surrogates							
Phenol-d6	13127-88-3	0.5	%	78.8	87.5	86.1	86.2	88.9
2-Chlorophenol-D4	93951-73-6	0.5	%	75.8	88.4	86.5	86.1	88.7
2.4.6-Tribromophenol	118-79-6	0.5	%	65.0	68.8	67.6	67.2	66.5
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	86.4	95.8	95.0	96.1	98.2
Anthracene-d10	1719-06-8	0.5	%	109	114	113	117	117
4-Terphenyl-d14	1718-51-0	0.5	%	87.3	92.4	91.6	92.4	93.0
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	83.5	73.3	80.9	89.7	77.2
Toluene-D8	2037-26-5	0.2	%	89.0	83.3	83.0	88.6	82.5
4-Bromofluorobenzene	460-00-4	0.2	%	83.5	83.0	79.9	88.7	77.9

Page : 7 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE



Page : 8 of 24 : ES2145800 Work Order

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH3 1.3-1.5	BH4 0.3-0.5	BH4 1.3-1.5	BH5 0.3-0.5	BH6 0.3-0.5
		Sampl	ing date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-006	ES2145800-007	ES2145800-008	ES2145800-009	ES2145800-010
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom								
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 9 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

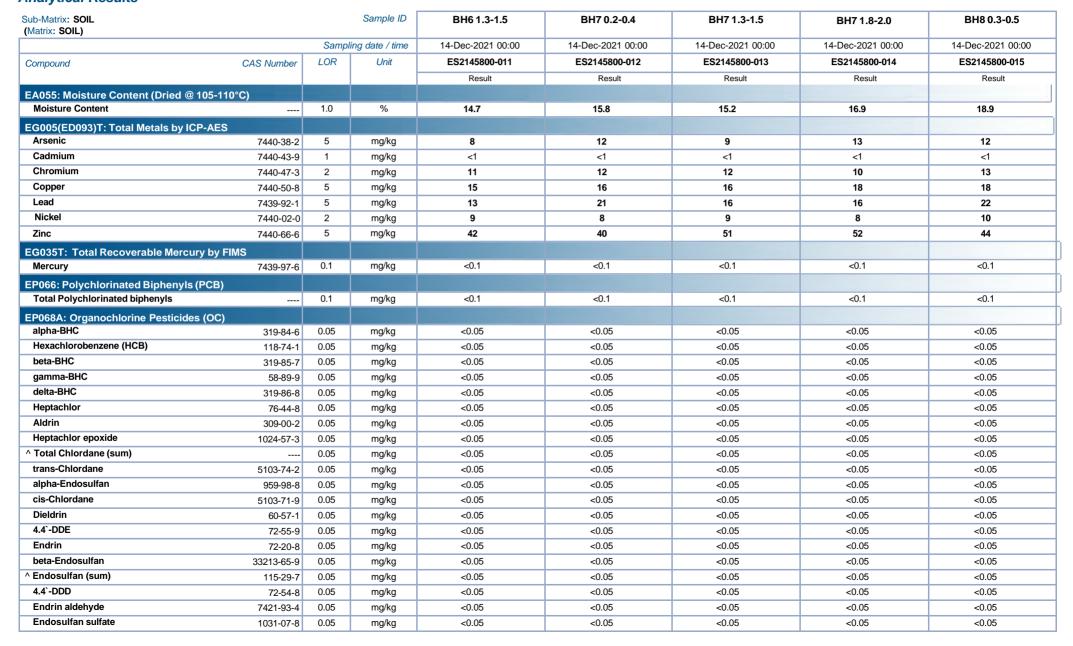
ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH3 1.3-1.5	BH4 0.3-0.5	BH4 1.3-1.5	BH5 0.3-0.5	BH6 0.3-0.5
		Sampl	ing date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-006	ES2145800-007	ES2145800-008	ES2145800-009	ES2145800-010
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	ydrocarbons - Conti	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocark	oons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	Fraction	s					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 10 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE


ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH3 1.3-1.5	BH4 0.3-0.5	BH4 1.3-1.5	BH5 0.3-0.5	BH6 0.3-0.5
		Sampl	ling date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-006	ES2145800-007	ES2145800-008	ES2145800-009	ES2145800-010
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	107	117	105	78.3	109
EP068S: Organochlorine Pesticide	e Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	130	116	120	94.2	112
EP068T: Organophosphorus Pest	icide Surrogate							
DEF	78-48-8	0.05	%	91.6	81.6	82.0	65.4	73.4
EP075(SIM)S: Phenolic Compoun	d Surrogates							
Phenol-d6	13127-88-3	0.5	%	102	104	102	94.2	101
2-Chlorophenol-D4	93951-73-6	0.5	%	101	102	99.6	94.6	97.2
2.4.6-Tribromophenol	118-79-6	0.5	%	92.0	83.0	83.8	76.8	79.0
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	109	105	103	98.3	100
Anthracene-d10	1719-06-8	0.5	%	107	107	109	104	105
4-Terphenyl-d14	1718-51-0	0.5	%	88.7	99.8	102	98.0	98.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	84.1	93.8	74.7	86.4	82.0
Toluene-D8	2037-26-5	0.2	%	78.8	96.8	79.2	94.1	90.5
4-Bromofluorobenzene	460-00-4	0.2	%	81.0	88.7	73.2	84.6	90.3

Page : 11 of 24 Work Order : ES2145800

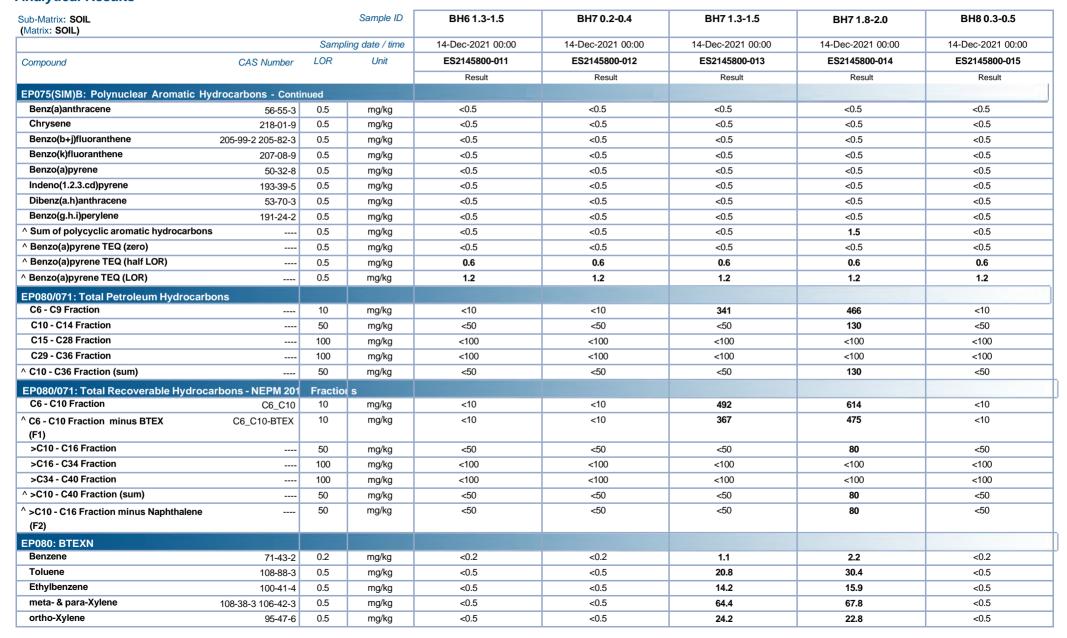
Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Page : 12 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE


ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 1.3-1.5	BH7 0.2-0.4	BH7 1.3-1.5	BH7 1.8-2.0	BH8 0.3-0.5
		Sampl	ling date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-011	ES2145800-012	ES2145800-013	ES2145800-014	ES2145800-015
p. D. D.				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	1.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 13 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Page : 14 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

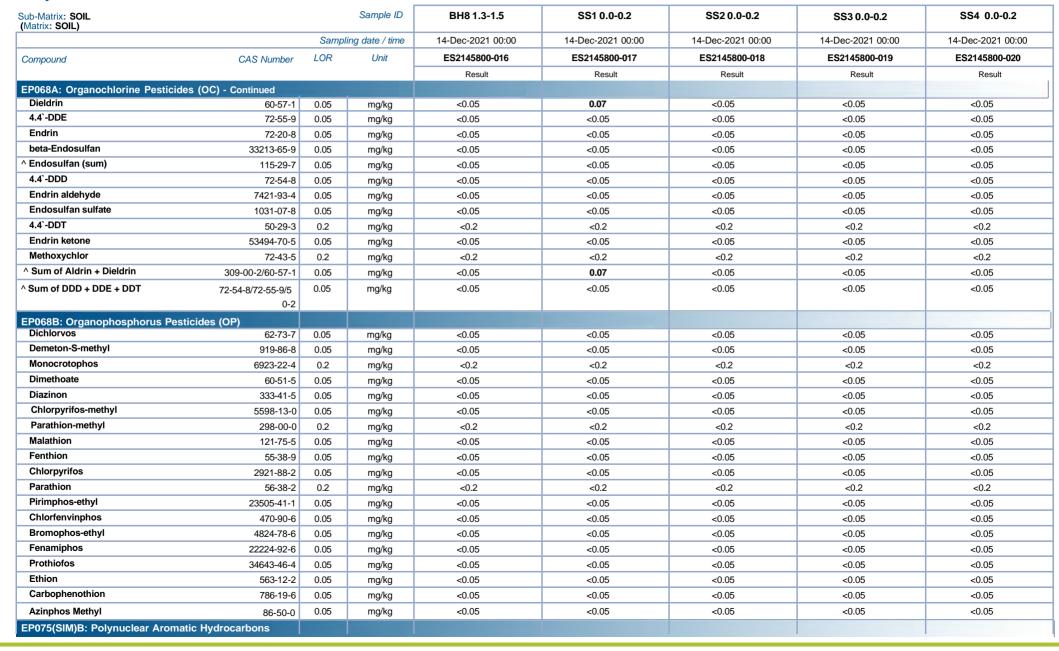
ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 1.3-1.5	BH7 0.2-0.4	BH7 1.3-1.5	BH7 1.8-2.0	BH8 0.3-0.5
		Sampl	ling date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-011	ES2145800-012	ES2145800-013	ES2145800-014	ES2145800-015
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	125	139	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	88.6	90.6	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	4	3	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	95.5	91.2	87.7	105	82.1
EP068S: Organochlorine Pesticide	e Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	115	103	82.4	117	89.2
EP068T: Organophosphorus Pesti	icide Surrogate							
DEF	78-48-8	0.05	%	78.2	72.7	105	85.2	65.4
EP075(SIM)S: Phenolic Compound	d Surrogates							
Phenol-d6	13127-88-3	0.5	%	99.1	102	100	97.1	95.1
2-Chlorophenol-D4	93951-73-6	0.5	%	97.7	101	99.0	99.9	92.8
2.4.6-Tribromophenol	118-79-6	0.5	%	72.4	82.8	83.3	83.6	72.8
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	100	102	101	101	96.4
Anthracene-d10	1719-06-8	0.5	%	106	105	105	105	99.0
4-Terphenyl-d14	1718-51-0	0.5	%	99.4	98.5	99.0	98.3	92.5
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.8	89.7	106	105	94.4
Toluene-D8	2037-26-5	0.2	%	83.6	95.9	98.5	99.7	87.0
4-Bromofluorobenzene	460-00-4	0.2	%	78.9	88.6	104	101	88.8

Page : 15 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

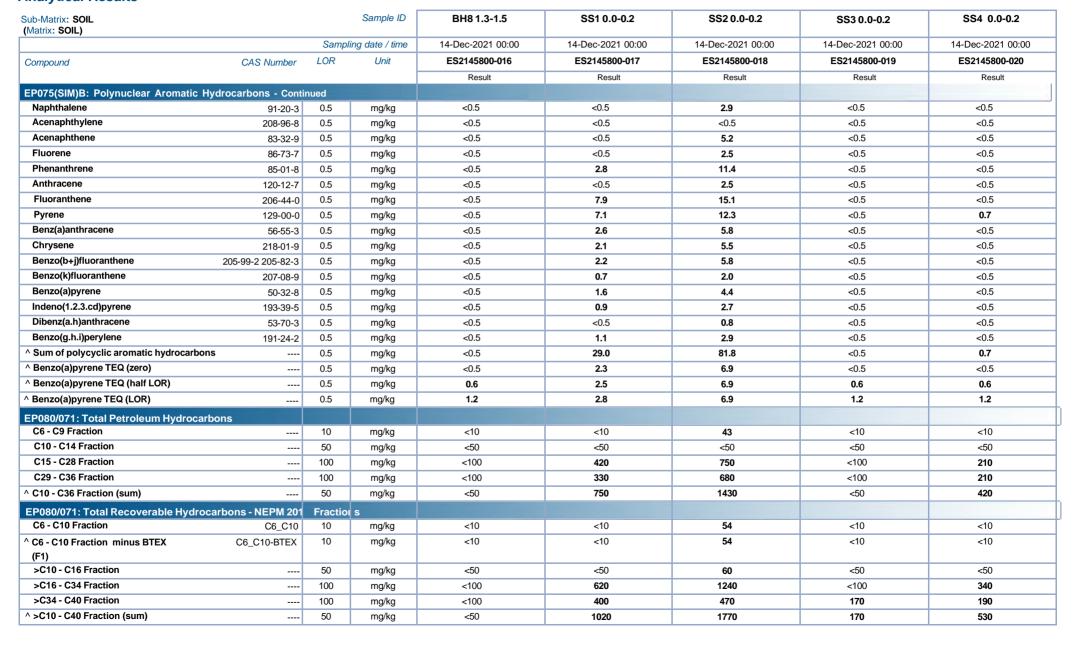

ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH8 1.3-1.5	SS1 0.0-0.2	SS2 0.0-0.2	SS3 0.0-0.2	SS4 0.0-0.2
		Sampl	ling date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-016	ES2145800-017	ES2145800-018	ES2145800-019	ES2145800-020
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		1.0	%	16.9	25.5	28.7	10.2	32.1
EA200: AS 4964 - 2004 Identification o	f Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg		No	No	No	No*
Asbestos (Trace)	1332-21-4	5	Fibres		No	No	No	No
Asbestos Type	1332-21-4	-			-	-	-	Ch
Synthetic Mineral Fibre		0.1	g/kg		No	No	No	No
Organic Fibre		0.1	g/kg		No	No	No	No
Sample weight (dry)		0.01	g		557	252	428	392
APPROVED IDENTIFIER:		-			B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg	8	8	8	6	8
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	11	9	39	7	15
Copper	7440-50-8	5	mg/kg	16	24	84	28	158
Lead	7439-92-1	5	mg/kg	14	52	197	15	91
Nickel	7440-02-0	2	mg/kg	10	7	31	7	14
Zinc	7440-66-6	5	mg/kg	50	1790	6340	109	208
EG035T: Total Recoverable Mercury b	v FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
EP066: Polychlorinated Biphenyls (PC	B)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides (O	(C)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	0.07	0.17	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.07	0.10	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.07	<0.05	<0.05

Page : 16 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE



Page : 17 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Page : 18 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH8 1.3-1.5	SS1 0.0-0.2	SS2 0.0-0.2	SS3 0.0-0.2	SS4 0.0-0.2
		Sampl	ing date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2145800-016	ES2145800-017	ES2145800-018	ES2145800-019	ES2145800-020
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydrod	arbons - NEPM 201	3 Fraction	ns - Continued					
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	60	<50	<50
(F2)								
P080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	100	86.2	115	99.7	110
P068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	109	85.2	94.6	138	118
P068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%	78.9	77.5	84.8	73.3	67.6
P075(SIM)S: Phenolic Compound Su	ırrogates							
Phenol-d6	13127-88-3	0.5	%	99.7	97.1	96.6	101	90.7
2-Chlorophenol-D4	93951-73-6	0.5	%	97.8	95.0	94.4	98.8	92.1
2.4.6-Tribromophenol	118-79-6	0.5	%	74.3	91.5	99.0	90.0	92.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	99.6	97.3	97.8	101	93.6
Anthracene-d10	1719-06-8	0.5	%	101	99.6	101	108	97.7
4-Terphenyl-d14	1718-51-0	0.5	%	95.5	92.4	96.2	98.5	90.3
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	94.3	102	92.0	103	94.0
Toluene-D8	2037-26-5	0.2	%	92.8	104	93.8	99.2	114
4-Bromofluorobenzene	460-00-4	0.2	%	85.2	97.6	86.0	94.2	104

Page : 19 of 24 Work Order : ES2145800

Aldrin

Heptachlor epoxide

trans-Chlordane

alpha-Endosulfan

cis-Chlordane

^ Total Chlordane (sum)

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

309-00-2

1024-57-3

5103-74-2

959-98-8

5103-71-9

0.05

0.05

0.05

0.05

0.05

0.05

mg/kg

mg/kg

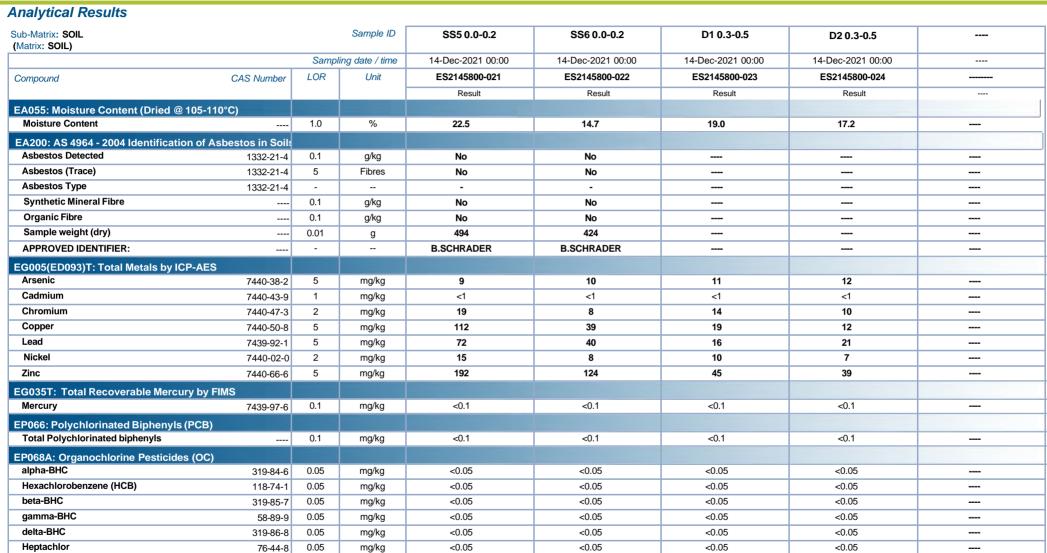
mg/kg

mg/kg

mg/kg

mg/kg

< 0.05


< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

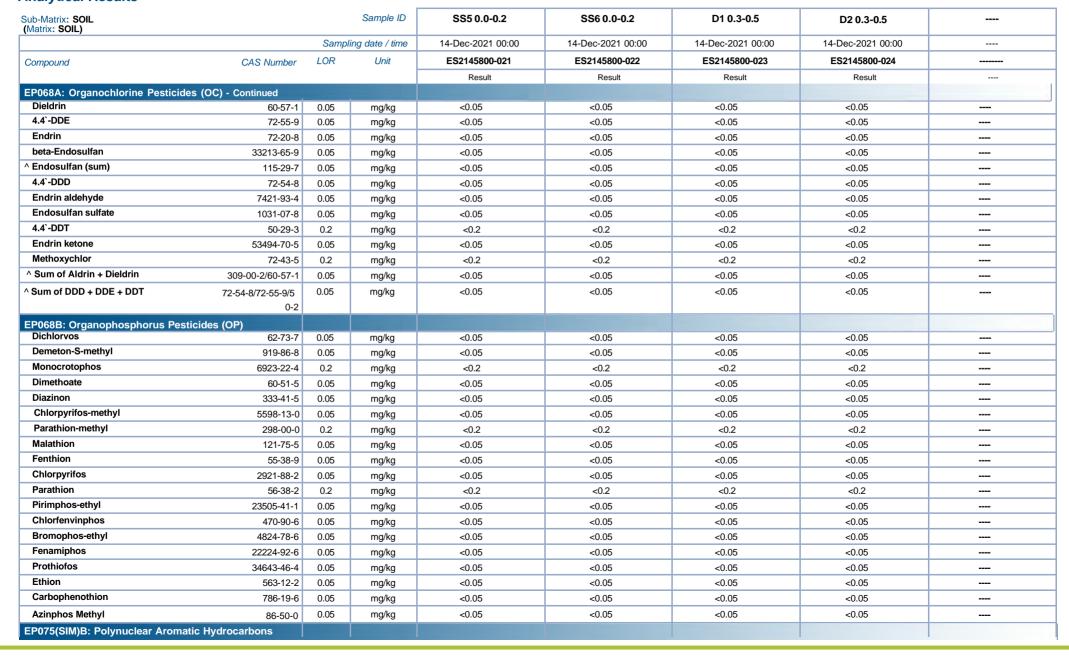
< 0.05

< 0.05

< 0.05

< 0.05

< 0.05



Page : 20 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Page : 21 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS5 0.0-0.2	SS6 0.0-0.2	D1 0.3-0.5	D2 0.3-0.5	
·		Sampl	ing date / time	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2145800-021	ES2145800-022	ES2145800-023	ES2145800-024	
•				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	
EP080/071: Total Petroleum Hydroc	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydr	rocarbons - NEPM 201	Fraction	s					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	

Page : 22 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS5 0.0-0.2	SS6 0.0-0.2	D1 0.3-0.5	D2 0.3-0.5	
		Sampl	ing date / time	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2145800-021	ES2145800-022	ES2145800-023	ES2145800-024	
				Result	Result	Result	Result	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
` >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	100	100.0	109	85.2	
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	119	139	138	106	
EP068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%	65.5	75.5	73.9	61.6	
EP075(SIM)S: Phenolic Compound Su	urrogates							
Phenol-d6	13127-88-3	0.5	%	100.0	100.0	98.1	94.6	
2-Chlorophenol-D4	93951-73-6	0.5	%	98.6	98.9	97.9	93.9	
2.4.6-Tribromophenol	118-79-6	0.5	%	85.9	84.2	86.6	84.7	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	101	102	100	98.1	
Anthracene-d10	1719-06-8	0.5	%	107	105	104	102	
4-Terphenyl-d14	1718-51-0	0.5	%	97.1	96.9	95.6	94.7	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	109	90.3	94.7	88.9	
Toluene-D8	2037-26-5	0.2	%	108	95.5	97.9	92.9	
4-Bromofluorobenzene	460-00-4	0.2	%	116	93.1	97.0	88.9	

Page : 23 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

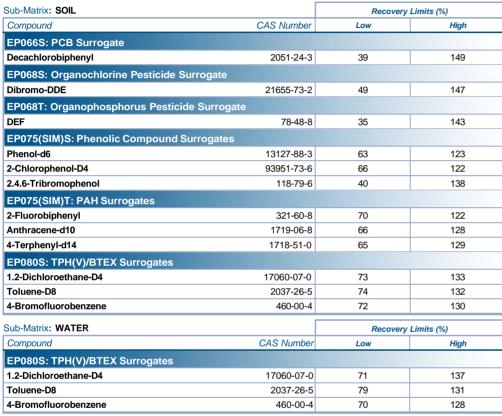
Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	RINSATE	 	
	Sampling date / time				 	
Compound	CAS Number	LOR	Unit	ES2145800-025	 	
				Result	 	
EP080/071: Total Petroleum Hydro	carbons					
C6 - C9 Fraction		20	μg/L	<20	 	
EP080/071: Total Recoverable Hyd	Irocarbons - NEPM 201	Fractio	s			
C6 - C10 Fraction	C6_C10		μg/L	<20	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	 	
(F1)						
EP080: BTEXN						
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	114	 	
Toluene-D8	2037-26-5	2	%	112	 	
4-Bromofluorobenzene	460-00-4	2	%	108	 	

Analytical Results

Descriptive Results

Sub-Matrix: SOIL


Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	s in Soils	
EA200: Description	SS1 0.0-0.2 - 14-Dec-2021 00:00	A soil sample.
EA200: Description	SS2 0.0-0.2 - 14-Dec-2021 00:00	A soil sample.
EA200: Description	SS3 0.0-0.2 - 14-Dec-2021 00:00	A soil sample.
EA200: Description	SS4 0.0-0.2 - 14-Dec-2021 00:00	A soil sample containing one piece of asbestos cement sheeting approximately 3x2x1mm.
EA200: Description	SS5 0.0-0.2 - 14-Dec-2021 00:00	A soil sample.
EA200: Description	SS6 0.0-0.2 - 14-Dec-2021 00:00	A soil sample.

Page : 24 of 24 Work Order : ES2145800

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Surrogate Control Limits

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

CERTIFICATE OF ANALYSIS

Page

: 1 of 8

Work Order : **ES2146288**

Client : REGIONAL GEOTECHNICAL SOLUTION Laboratory : Environmental Division Sydney

Contact : Andrew Hills Contact : Customer Services ES

Address : 44 BENT STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WINGHAM NSW, AUSTRALIA 2429

 Telephone
 : +61 02 6553 5641
 Telephone
 : +61-2-8784 8555

 Project
 : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE
 Date Samples Received
 : 17-Dec-2021 09:36

Order number : ---- Date Analysis Commenced : 20-Dec-2021

C-O-C number : ---- Issue Date : 04-Jan-2022 15:05

Site : 17 DENISON STREET, GLOUCESTER

Quote number : EN/222

No. of samples received 8
No. of samples analysed 7

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Sampler

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category

Edwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSWIvan TaylorAnalystSydney Inorganics, Smithfield, NSWWisam MarassaInorganics CoordinatorSydney Inorganics, Smithfield, NSW

Page : 2 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request.

In house developed procedures

Where moisture determination has been performed, results are reported on a dry weight basis.

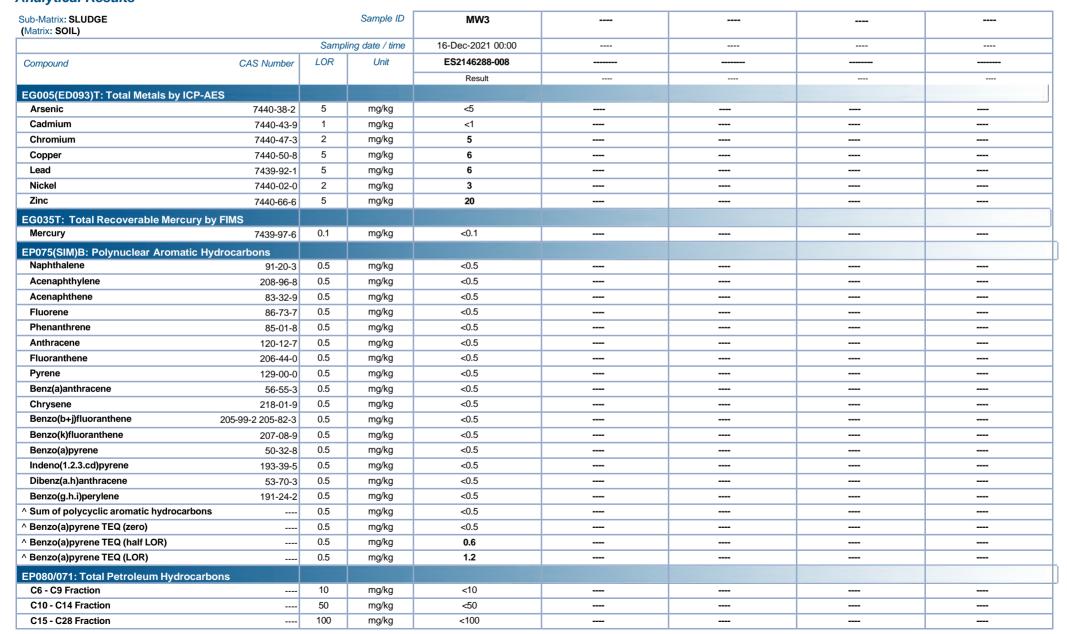
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG035: Positive Mercury result ES2146288 #2 has been confirmed by reanalysis.
- EP075(SIM): Particular sample required dilution due to sample matrix interferences. LOR values have been adjusted accordingly.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

Page : 3 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Page : 4 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: SLUDGE			Sample ID	MW3	 	
(Matrix: SOIL)						
		Sampli	ing date / time	16-Dec-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2146288-008	 	
				Result	 	
EP080/071: Total Petroleum Hydrocarb	oons - Continued					
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	Fraction	s			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP075(SIM)S: Phenolic Compound Su	rrogates					
Phenol-d6	13127-88-3	0.5	%	88.2	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	94.6	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	86.8	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	108	 	
Anthracene-d10	1719-06-8	0.5	%	99.1	 	
4-Terphenyl-d14	1718-51-0	0.5	%	104	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.9	 	
Toluene-D8	2037-26-5	0.2	%	84.3	 	
4-Bromofluorobenzene	460-00-4	0.2	%	76.6	 	

Page : 5 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	DW1	RINSATE2	TRIP SPIKE
		Sampl	ing date / time	16-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2146288-001	ES2146288-002	ES2146288-004	ES2146288-005	ES2146288-006
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-M	ns .							
Arsenic	7440-38-2	0.001	mg/L	0.010	0.007			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0006			
Chromium	7440-47-3	0.001	mg/L	0.003	0.013			
Copper	7440-50-8	0.001	mg/L	0.009	0.183			
Lead	7439-92-1	0.001	mg/L	0.010	0.031			
Nickel	7440-02-0	0.001	mg/L	0.004	0.049			
Zinc	7440-66-6	0.005	mg/L	0.029	0.765			
EG035F: Dissolved Mercury by FIMS	S							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0002			
EP075(SIM)B: Polynuclear Aromatic	: Hvdrocarbons							
Naphthalene	91-20-3	1.0	μg/L	3180	55.5			
Acenaphthylene	208-96-8	1.0	μg/L	<12.5	<1.7			
Acenaphthene	83-32-9	1.0	μg/L	<12.5	<1.7			
Fluorene	86-73-7	1.0	μg/L	39.7	3.3			
Phenanthrene	85-01-8	1.0	μg/L	39.6	5.8			
Anthracene	120-12-7	1.0	μg/L	<12.5	<1.7			
Fluoranthene	206-44-0	1.0	μg/L	<12.5	<1.7			
Pyrene	129-00-0	1.0	μg/L	<12.5	<1.7			
Benz(a)anthracene	56-55-3	1.0	μg/L	<12.5	<1.7			
Chrysene	218-01-9	1.0	μg/L	<12.5	<1.7			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<12.5	<1.7			
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<12.5	<1.7			
Benzo(a)pyrene	50-32-8	0.5	μg/L	<12.5	<1.7			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<12.5	<1.7			
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<12.5	<1.7			
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<12.5	<1.7			
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	μg/L	3260	64.6			
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<6.2	<0.8			
EP080/071: Total Petroleum Hydroc	arbons							
C6 - C9 Fraction		20	μg/L	106000	60	106000	<20	
C10 - C14 Fraction		50	μg/L	251000	210	85300		
C15 - C28 Fraction		100	μg/L	16500	1160	5700		
C29 - C36 Fraction		50	μg/L	780	220	230		
^ C10 - C36 Fraction (sum)		50	μg/L	268000	1590	91200		

Page : 6 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	DW1	RINSATE2	TRIP SPIKE
		Sampli	ing date / time	16-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2146288-001	ES2146288-002	ES2146288-004	ES2146288-005	ES2146288-006
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	Fraction	s					
C6 - C10 Fraction	C6_C10	20	μg/L	111000	70	110000	<20	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	44300	40	37600	<20	
>C10 - C16 Fraction		100	μg/L	144000	210	48800		
>C16 - C34 Fraction		100	μg/L	10600	1320	3640		
>C34 - C40 Fraction		100	μg/L	310	<100	<100		
>C10 - C40 Fraction (sum)		100	μg/L	155000	1530	52400		
>C10 - C16 Fraction minus Naphthalene (F2)		100	μg/L	143000	210	48300		
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	18800	2	18700	<1	14
Toluene	108-88-3	2	μg/L	23500	10	28800	<2	15
Ethylbenzene	100-41-4	2	μg/L	3990	3	4060	<2	14
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	14600	12	15000	<2	15
ortho-Xylene	95-47-6	2	μg/L	5780	6	5810	<2	15
`Total Xylenes		2	μg/L	20400	18	20800	<2	30
Sum of BTEX		1	μg/L	66700	33	72400	<1	73
Naphthalene	91-20-3	5	μg/L	561	<5	531	<5	18
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	1.0	%	12.6	23.4			
2-Chlorophenol-D4	93951-73-6	1.0	%	36.0	33.5			
2.4.6-Tribromophenol	118-79-6	1.0	%	77.6	64.2			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	88.3	57.1			
Anthracene-d10	1719-06-8	1.0	%	75.2	60.3			
4-Terphenyl-d14	1718-51-0	1.0	%	96.5	68.7			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	102	92.9	83.6	87.3	94.1
Toluene-D8	2037-26-5	2	%	104	106	103	93.5	107
4-Bromofluorobenzene	460-00-4	2	%	102	99.0	100	91.6	102

Page : 7 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

Sub-Matrix: WATER (Matrix: WATER)	Sample ID			TRIP BLANK	 	
	Sampling date / time			16-Dec-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2146288-007	 	
				Result	 	
EP080: BTEXN						
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	94.5	 	
Toluene-D8	2037-26-5	2	%	106	 	
4-Bromofluorobenzene	460-00-4	2	%	98.1	 	

Page : 8 of 8 Work Order : ES2146288

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Surrogate Control Limits

Sub-Matrix: SLUDGE		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
			34
2.4.6-Tribromophenol	118-79-6	17	125
	118-79-6		* * *
EP075(SIM)T: PAH Surrogates	118-79-6 321-60-8		* .
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl		17	125
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10	321-60-8	17	125
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14	321-60-8 1719-06-8	17 20 27	125 104 113
2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14 EP080S: TPH(V)/BTEX Surrogates 1.2-Dichloroethane-D4	321-60-8 1719-06-8	17 20 27	125 104 113
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14 EP080S: TPH(V)/BTEX Surrogates	321-60-8 1719-06-8 1718-51-0	17 20 27 32	125 104 113 112

CERTIFICATE OF ANALYSIS

Work Order : ES2201639 Page : 1 of 5

Client : REGIONAL GEOTECHNICAL SOLUTION Laboratory : Environmental Division Sydney

Contact : Andrew Hills Contact : Customer Services ES

Address : 44 BENT STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WINGHAM NSW, AUSTRALIA 2429

Telephone : +61 02 6553 5641 Telephone : +61-2-8784 8555 Date Samples Received : 19-Jan-2022 12:30

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Order number : ----C-O-C number

Date Analysis Commenced : 21-Jan-2022

Sampler

Issue Date : 27-Jan-2022 13:36

Site : 17 DENISON STREET, GLOUCESTER

Quote number

: EN/222

No. of samples received 1 No. of samples analysed

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Page : 2 of 5 Work Order : ES2201639

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request.

In house developed procedures

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EG035: LOR raised for Mercury due to sample matrix (High TSS).
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 5 Work Order : ES2201639

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	 	
		Sampl	ing date / time	18-Jan-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2201639-001	 	
,				Result	 	
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.362	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0102	 	
Chromium	7440-47-3	0.001	mg/L	4.18	 	
Copper	7440-50-8	0.001	mg/L	4.82	 	
Lead	7439-92-1	0.001	mg/L	5.49	 	
Nickel	7440-02-0	0.001	mg/L	2.83	 	
Zinc	7440-66-6	0.005	mg/L	17.6	 	
EG035T: Total Recoverable Mercury	y by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0010	 	
EP075(SIM)B: Polynuclear Aromatic						
Naphthalene	91-20-3	1.0	μg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.9	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	μg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	
EP080/071: Total Petroleum Hydroca	arbons					
C6 - C9 Fraction		20	μg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	 	

Page : 4 of 5 Work Order : ES2201639

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

ALS

and the war-			Comple ID	B#NA/O				
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3				
(mann mann)		Sampl	ling date / time	18-Jan-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2201639-001				
				Result				
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	Fraction	s					
C6 - C10 Fraction	C6_C10	20	μg/L	<20				
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20				
(F1)								
>C10 - C16 Fraction		100	μg/L	<100				
>C16 - C34 Fraction		100	μg/L	<100				
>C34 - C40 Fraction		100	μg/L	<100				
^ >C10 - C40 Fraction (sum)		100	μg/L	<100				
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100				
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1				
Toluene	108-88-3	2	μg/L	<2				
Ethylbenzene	100-41-4	2	μg/L	<2				
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2				
ortho-Xylene	95-47-6	2	μg/L	<2				
^ Total Xylenes		2	μg/L	<2				
^ Sum of BTEX		1	μg/L	<1				
Naphthalene	91-20-3	5	μg/L	<5				
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	1.0	%	25.6				
2-Chlorophenol-D4	93951-73-6	1.0	%	51.6				
2.4.6-Tribromophenol	118-79-6	1.0	%	54.6				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	63.5				
Anthracene-d10	1719-06-8	1.0	%	85.5				
4-Terphenyl-d14	1718-51-0	1.0	%	76.1				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	99.6				
Toluene-D8	2037-26-5	2	%	105				
4-Bromofluorobenzene	460-00-4	2	%	107				
	.55 55 1		11		<u> </u>	I.	<u> </u>	l

Page : 5 of 5 Work Order : ES2201639

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : RGS02423.1 PROPOSED VISITOR INFORMATION CENTRE

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	13127-88-3	10	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27	113	
4-Terphenyl-d14	1718-51-0	32	112	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	71	137	
Toluene-D8	2037-26-5	79	131	
4-Bromofluorobenzene	460-00-4	70	128	

Appendix C

Site History Documentation

ADVANCE LEGAL SEARCHERS PTY LIMITED

(ACN 147 943 842) ABN 82 147 943 842

 18/36 Osborne Road,
 Telephone:
 +612 9977 6713

 Manly NSW 2095
 Mobile:
 0412 169 809

Email: search@alsearchers.com.au

11th June 2020

REGIONAL GEOTECHNICAL SOLUTIONS PTY LTD

44 Bent Street,

WINGHAM NSW 2429

Attention: Andrew Hills

RE: 17 Denison Street,

Gloucester RGS02423.1

Current Search

Folio Identifier 1/571352 (title attached) DP 571352 (plan attached) Dated 10th June, 2020 Registered Proprietor:

THE STATE OF NEW SOUTH WALES

Title Tree Lot 1 DP 571352

Folio Identifier 1/571352

Certificate of Title Volume 12522 Folio 218

Certificate of Title Volume 11671 Folio 122

IVA 7387

Conveyance Book 2879 No. 207

Conveyance Book 2393 No. 472

Conveyance Book 2175 No. 456

Conveyance Book 2132 No. 501

Conveyance Book 881 No. 239

Summary of Proprietor(s) **Lot 1 DP 571352**

Year Proprietor(s)

	(Lot 1 DP 571352)
2019 – todate	The State of New South Wales
2019 – 2019	Alan Richard Nicholls
	(Trustee of the bankrupt estate of Stephen Joh Griffin & Nerida Joy
	Griffin))
2005 – 2019	Stephen John Griffin
	Nerida Joy Griffin
1988 – 2005	Gloucester Machinery Co. Pty Limited
	(Lot 1 DP 571352 – CTVol 12522 Fol 218)
1975 – 1988	Gloucester Machinery Co. Pty Limited
1974 – 1975	Ernest William Mussared, company director
	Alice May Mussared, wife
1974 – 1974	The Commercial Banking Company of Sydney Limited
	(Mortgagors Ernest William Mussared, company director
	Alice May Mussared, his wife)
	(Lot 2 DP 548664 – Area 1 Acre 1 Rood 19 ¼ Perches –
	CTVol 11671 Fol 122)
1971 – 1974	The Commercial Banking Company of Sydney Limited
	(Mortgagors Ernest William Mussared, company director
	Alice May Mussared, wife)
	(Part Lot 5 and Lot 6 Section 2 Town of Gloucester – Conv Bk
	2879 No. 207)
1968 – 1968	Ernest William Mussared, company director
	Alice May Mussared, wife
	(Part Lot 5 and Lot 6 Section 2 Town of Gloucester, Parish of
1056 1060	Gloucester – Conv Bk 2393 No. 472)
1956 – 1968	Gloucester Motors Pty Limited (in liquidation)
1955 – 1956	Mary Garland, widow
	(Part of Lot 5 and Lot 6 Section 2 Town of Gloucester – Conv
1051 1055	Bk 2175 No. 456)
1951 – 1955	Sidney Garland, farmer
	Mary Garland, wife

Cont.

Cont.

	(Lot 5 and Lot 6 Section 2 Town of Gloucester – Conv Bk 2132
	No. 501)
1950 – 1951	Samuel James Ross Pryor, clerk
	Vera Emily Pryor, wife
1931 – 1950	Marion Josephine Green, widow
	Harry Joseph Green, estate
	(Part of Lot 5 and Lot 6 Section 2 Town of Gloucester – Conv
	Bk 881 No. 239)
1909 – 1931	Harry Joseph Green, farmer

Ref: NOUSER

NSW LAND REGISTRY SERVICES

Locality : GLOUCESTER
LGA : MID-COAST

DP 610197 6254 TDP 73060/8 **₹DP** 116297 DP ~DP 718359 TDP 830932 192505 D DP 741801 -← DP 194853 ~DP 546120 DP 212064 DENISON ST 32 ДQ DP 99907 3 DP 611247 8 MIID-COAST 8 BOUNDARYST COUNCIL DP 328783 DP 570387 10 DP 571352 0p548664 DP\548664 DP 6206027 N DP 245427 CHURCH ST "DP 2415666 2 DP 241028° [∞] DP 245427 ~DP 738615 3 DP 709680 DP 594809√ 794855 KING ST DP 864391 125 DD 126 KING ST PP 8.5-17-25.5 34 Metres

Report Generated 6:30:24 PM, 9 June, 2020 Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only. Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Parish: GLOUCESTER

County: GLOUCESTER

Cadastral Records Enquiry Report: Lot 1 DP 571352

Ref: NOUSER

Locality : GLOUCESTERParish : GLOUCESTERLGA : MID-COASTCounty : GLOUCESTER

Status Surv/Comp **Purpose** DP116251 Lot(s): A CA95025 - LOT A DP116251 DP116254 Lot(s): 1 CA98791 - LOT 1 DP116254 DP116272 Lot(s): 1 CA88372 - LOT 1 DP116272 Lot(s): 2 CA94830 - LOT 2 DP116272 DP116297 Lot(s): A CA109982 - LOT A DP116297 DP116343 Lot(s): 4 CA94962 - LOT 4 DP116343 Lot(s): 3 CA88396 - LOT 3 DP116343 DP162258 Lot(s): A CA94730 - LOT A DP162258 DP241028 Lot(s): 1, 3, 5 CA104767 - LOTS 1, 3 AND 5 DP241028 DP241566 Lot(s): 8 CA98794 - LOT 8 DP241566 Lot(s): 10 CA123877 - LOT 10 DP241566 DP515720 Lot(s): 1 CA94697 - LOT 1 DP515720 DP564844 Lot(s): 1 DP1000659 REGISTERED SURVEY **LEASE** DP842441 Lot(s): 1 SURVEY DP1000659 **LEASE** REGISTERED DP1126567 Lot(s): 114, 115, 116 CA105596 - LOTS 114-116 DP1126567 DP1126999 Lot(s): 1 DP1106029 HISTORICAL COMPILATION LIMITED FOLIO CREATION CA103029 - LOT 3 DP1106029 DP1137852 Lot(s): 71, 72 CA140574 - LOTS 71-72 DP1137852 DP1155290 Lot(s): 10, 11 DP1128789 HISTORICAL COMPILATION LIMITED FOLIO CREATION CA111118 - LOTS 117-118 DP1128789 PA82865 - LOTS 10-11 DP1155290 DP1176152 Lot(s): 11 DP547483 HISTORICAL SURVEY **SUBDIVISION**

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL ACTIVITY PRIOR TO SEPTEMBER 2002** you must refer to the RGs Charting and Reference Maps.

Cadastral Records Enquiry Report: Lot 1 DP 571352

Parish: GLOUCESTER

Ref: NOUSER

Locality: GLOUCESTER LGA: MID-COAST **County**: GLOUCESTER

	Status	Surv/Comp	Purpose
DP1190966			
Lot(s): 131			
DP116290	HISTORICAL	COMPILATION	DEPARTMENTAL
DP1057688	HISTORICAL	COMPILATION	LIMITED FOLIO CREATION
DP1103429	HISTORICAL	SURVEY	REDEFINITION
CA88584 - LOT 13 DP1	057688		
CA94649 - LOT 1 DP11	6290		
OFFICIAL SEARCH 360	092 - LOT 1 DP116290		
DP1203606			
Lot(s): 40			
DP164539	HISTORICAL	SURVEY	UNRESEARCHED
DP547482	HISTORICAL	SURVEY	SUBDIVISION
DP1222701			
Lot(s): 123			
DP784009	HISTORICAL	COMPILATION	DEPARTMENTAL
DP1238322 Lot(s): 57			
DP195127	HISTORICAL	COMPILATION	DEPARTMENTAL

Cadastral Records Enquiry Report: Lot 1 DP 571352

Ref: NOUSER

Locality : GLOUCESTERParish : GLOUCESTERLGA : MID-COASTCounty : GLOUCESTER

	20/11/11/12 00/101	County 1 GLGGGLGTLIX
Plan	Surv/Comp	Purpose
DP116251	COMPILATION	DEPARTMENTAL
DP116253	COMPILATION	DEPARTMENTAL
DP116254	COMPILATION	DEPARTMENTAL
DP116271	COMPILATION	DEPARTMENTAL
DP116272	COMPILATION	DEPARTMENTAL
DP116283	COMPILATION	DEPARTMENTAL
DP116297	COMPILATION	DEPARTMENTAL
DP116303	COMPILATION	DEPARTMENTAL
DP116343	COMPILATION	DEPARTMENTAL
DP162258	SURVEY	UNRESEARCHED
DP192505	COMPILATION	UNRESEARCHED
DP194853	COMPILATION	DEPARTMENTAL
DP195127	COMPILATION	DEPARTMENTAL
DP212064	SURVEY	OLD SYSTEM CONVERSION
DP241028	SURVEY	SUBDIVISION
DP241566	SURVEY	SUBDIVISION
DP245427	SURVEY	SUBDIVISION
DP328783	COMPILATION	UNRESEARCHED
DP336468	COMPILATION	UNRESEARCHED
DP515720	SURVEY	SUBDIVISION
DP535567	SURVEY	SUBDIVISION
DP546120	SURVEY	SUBDIVISION
DP546401	SURVEY	SUBDIVISION
DP546808	SURVEY	SUBDIVISION
DP547482	SURVEY	SUBDIVISION
DP547483	SURVEY	SUBDIVISION
DP548664	SURVEY	SUBDIVISION
DP564844	SURVEY	RESUMPTION OR ACQUISITION
DP570387	SURVEY	SUBDIVISION
DP571352	COMPILATION	SUBDIVISION
DP594809	SURVEY	SUBDIVISION
DP606755	COMPILATION	SUBDIVISION
DP610197	SURVEY	OLD SYSTEM CONVERSION
DP611247	COMPILATION	SUBDIVISION
DP620602	SURVEY	OLD SYSTEM CONVERSION
DP709680	SURVEY	OLD SYSTEM CONVERSION
DP718359	COMPILATION	DEPARTMENTAL
DP730608	COMPILATION	DEPARTMENTAL
DP738615	COMPILATION	DEPARTMENTAL
DP741801	COMPILATION	DEPARTMENTAL
DP776482	SURVEY	SUBDIVISION
DP794855	COMPILATION	DEPARTMENTAL
DP830932	SURVEY	DELIMITATION
DP842441	COMPILATION	PRIMARY APPLN NON SUBDIVISION
DP864391	SURVEY	SUBDIVISION
DP999071	COMPILATION	DEPARTMENTAL
DP1001832	COMPILATION	LIMITED FOLIO CREATION
DP1126567	COMPILATION	LIMITED FOLIO CREATION
DP1126999	SURVEY	REDEFINITION
DP1137852	COMPILATION	LIMITED FOLIO CREATION
DP1155290	SURVEY	REDEFINITION
DP1155290	UNRESEARCHED	REDEFINITION
DP1176152	SURVEY	SUBDIVISION
DP1190966	SURVEY	CONSOLIDATION
DP1190966	UNRESEARCHED	CONSOLIDATION
DP1203606	COMPILATION	CONSOLIDATION
DP1203000 DP1222701	SURVEY	CONSOLIDATION
DP1222701 DP1238322	SURVEY	REDEFINITION
SP22869	COMPILATION	STRATA PLAN
3F 22009	COMPILATION	SIRATA FLAN

Caution:

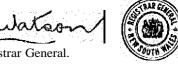
This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

IVA Ne. 7387

Vol **11671** Fol 122

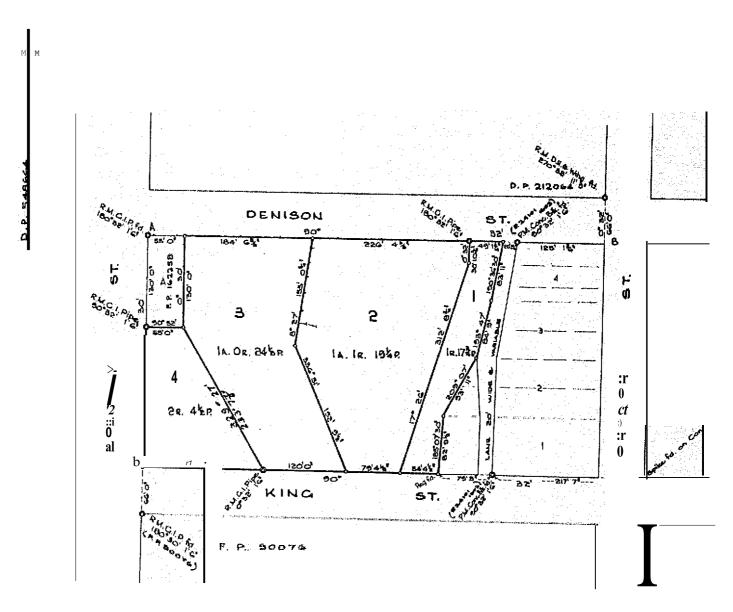
Sdi tion iss11ed 23... 9 -19 7.1


CANCELLED ffil

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described .-C, subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Sche_dule.

r-Witness r:,J;)

Z 0 "" at: "C


Z 0

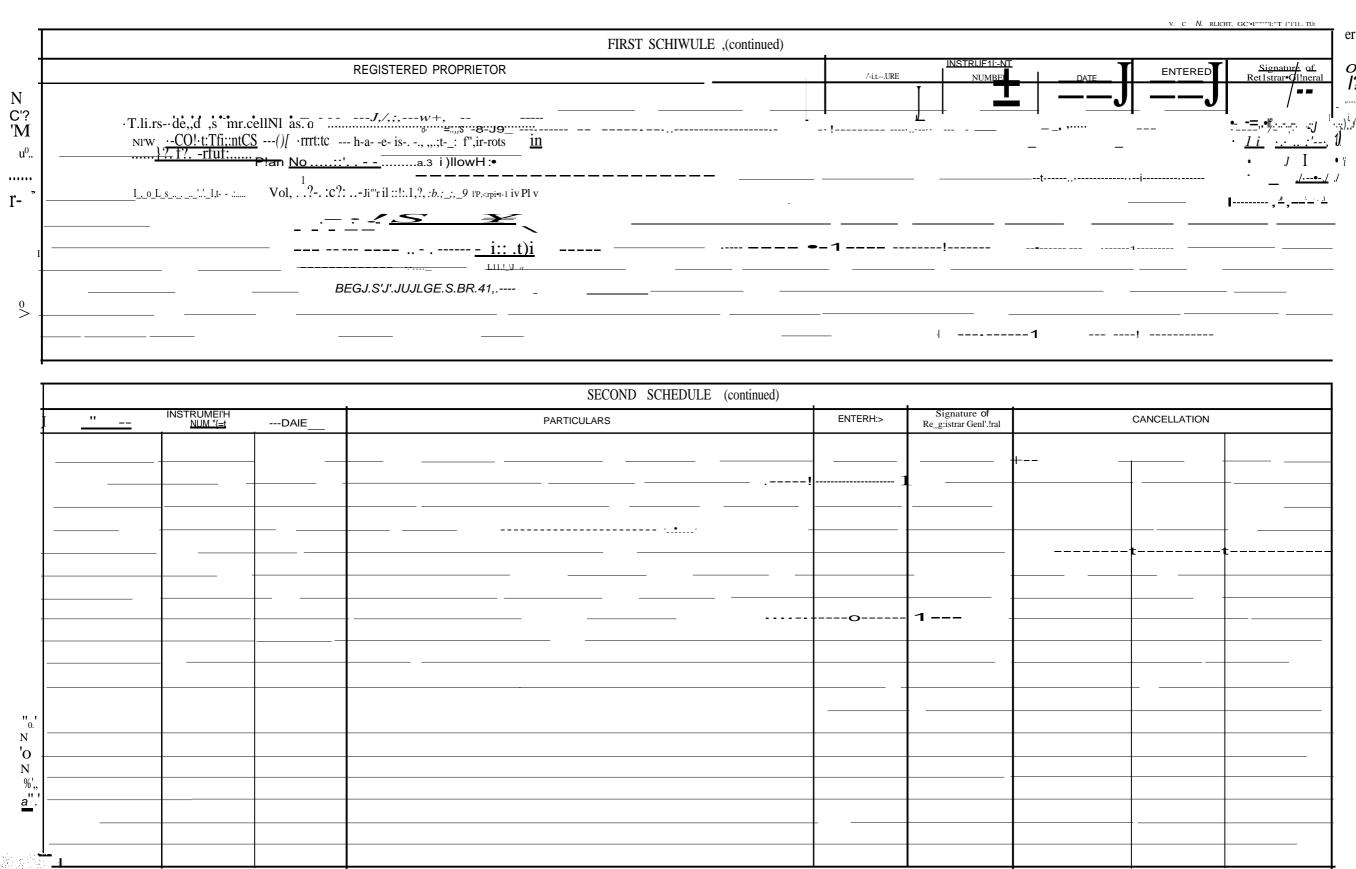
WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE

LAND TITES OFFICE.

PLAN SHOWING LOCATION OF LAND

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 548664 at Gloucester in the Shire of Gloucester Parish of Gloucestur and Cuurty of Gloucester belng part of 464640 ·acres g anted Australian Agricultural Company on 20-11-1847.


FIRST SCHEDULE

THE COMMSRCIAL BANKING COMPANY OF SYDNEY LIMITED.

S1,coND SCIiE!JULE:

- 612'/ Reservations and conditions, if any contained in the Crown Grant above referred to.
- 2. CAUTION No.1'1396600 ?pursuant to Section 28J Real_ Property Act, 1900.
 - caveat No.M396601(by the Registrar General.

Registrar General

c',.f *i..t:i*

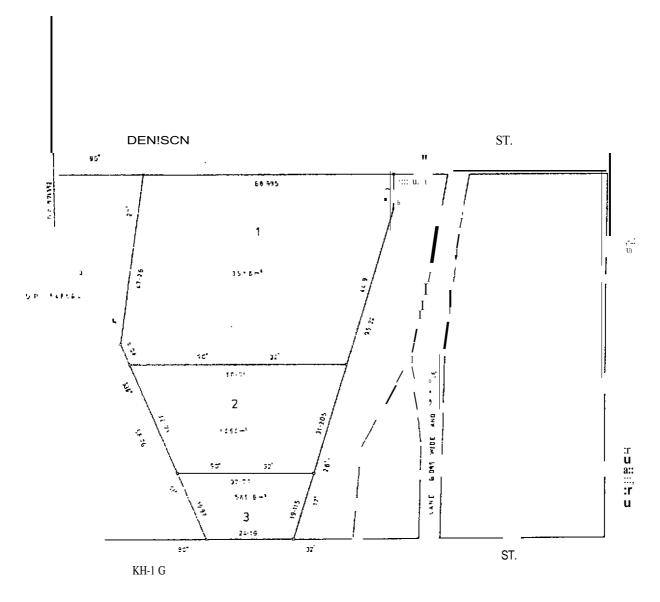
 $NE \backslash \backslash SOI.JTH \backslash \backslash ALES$

Vol......4.1.8......

IVA No.7387

ricr Title Val.11671 ?al.:2

Edition issued 28-8-1974


I certify that the person described in the First Schedule i5 the registered proprietor of the undermention estate _i11.'11_e _land .Vw'.ithin described subject nevertheless to such exceptions encumbrances and interests as are $shO\v n$ in the Second Schedule.

Asulation Registrar General.

PLAN SHOV.1NG LOCATION OF LAND

LENGTHS ARE I METRES

ESTATE :.1:0 LA.ND REFERRED TO

::state in FeeSimple in l.o-c 1 ir De;;o:si..ted ?lan 571352 a.t Gloucester in the Shire of Gloucester P2.rish of Glou-cester an.d County of Gloucester being part of 1880.3 square }::.ilometres granted to P.us =:::.lie.:-: ;;.gricultural Co:npany on 20-11-1847.

?IR.ST SCJ-iEDl.iLE

.... CONNERCIAL BULLETING VIOLENCE OF SYDNEY LIMITED.

SSCOND SCHEDULC:

NOTE: ENTRIES RULEO THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

The condition of the co

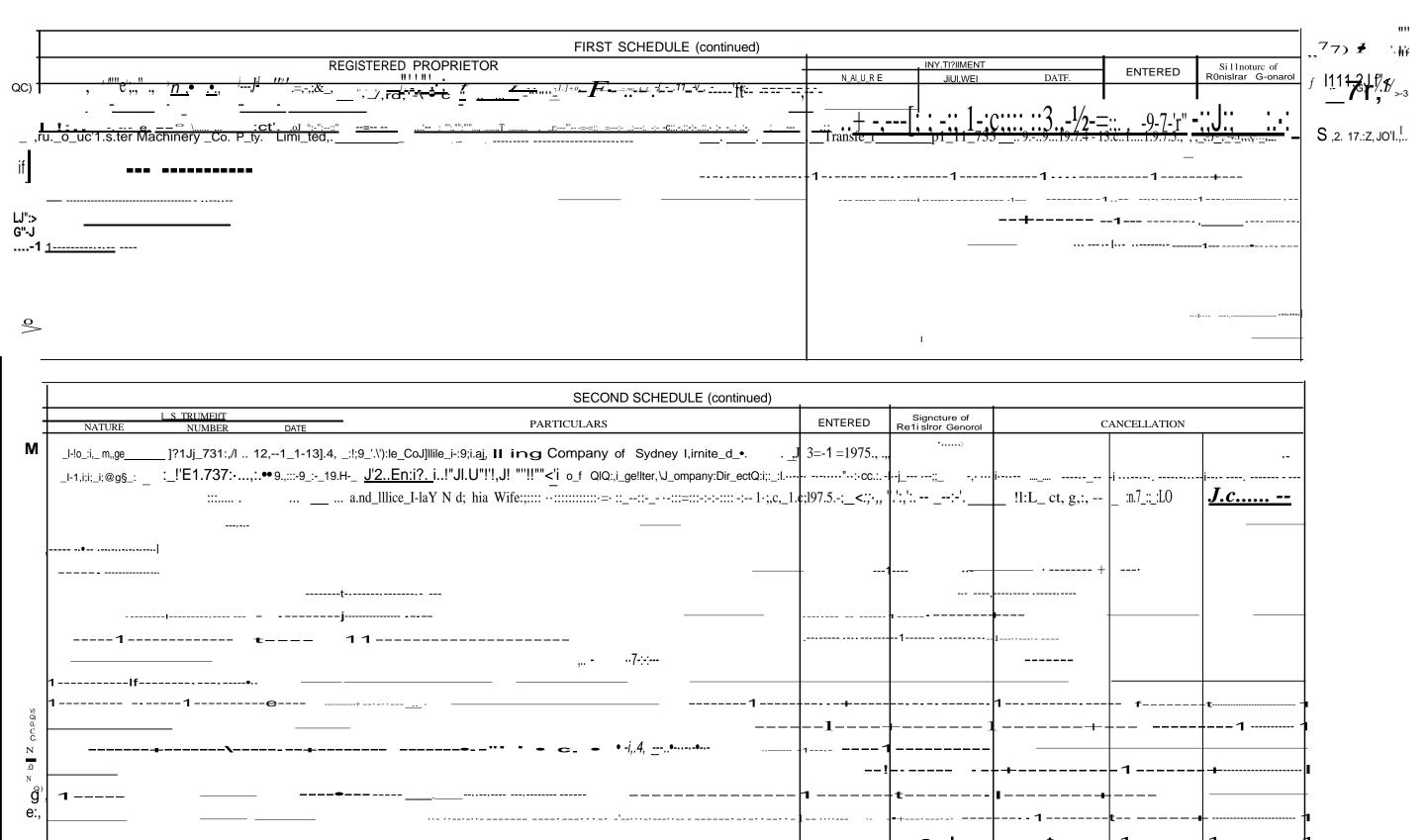
•••••

<.0 Z W.J f. .J << f-Y Z <0 <0 V Z 0 U

> 0 W 0..

Z 0 ||| W ... Z 0

u J...


Z

n·

, 4 u L ,o' W U !!: to f-

z^O

8

Fonn: llR Release: 4.3

REQUEST **New South Wales** Real Property Act 1900

1111**m** 1111**m** 11

PRIVACY NOTE: Section 318 of theRea.IProperty Act1900 (RP Act)authorises the by this form for the establishment c111d maintenance of the Real Property Ac1 1u:91:11Lc1. cu.....

the Register is made available to any person for search upon payment of a fee, if any. All Statutory Declarations and evidence that are lodged in support of land dealings will be treated as publicly accessible and will be

disclosed to persons upon request.

(A) STAMP DUTY If applicable. Revenue NSW use only

TORRENS TITL 571352

REGISTERED Number Torrens Title **DEALING**

(D) LODGED BY

Name, Address or DX, Telephone, and Customer Account Number if any Document CODE 4St 9c1S . Q-1 Collection Corsair Lawyers 7/16, 74-78 The Corso q11111s.@coc,.e.;1i•;wprS..co.r,1'1.Q(I \mathbf{Bo} MANLY NSW 209-Reference:ID: ARN: CLC: KM: 7376

APPLICANT

I ALAN RICHARD NICHOLLS

NATURE OF REQUEST

Disclaimer of onerous property pursuant to sl33(1) of t_e B nk!up cy Act 1966 (Cth)

(G) TEXT OF **REQUEST**

> On 11 November 2014, the land in item B vested in the Applicant pursuant to s58(1) of the Bankruptcy Act 1966 (Cth)in his capacity as trustee of the bankrupt estate of Nerida Joy Griffin, a registered proprietor. The Applicant disclaimed that interest pursuant to sl33(1) of the Bankruptcy Act 1966 (Cth) in accordance with the attached notice.

DATE _27//209

(H)

Certified correct for the purposes of the Real Property Act 1900 on behalfofthe applicant by the person whose

sig, atwe appom below

Signature:

Signatory's name: Signatory's capacity:

certifies that the eNOS data relevant to this dealing has been submitted and stored under

Angus Charles Blair solicito-r -

(I) This section is to be completed where a notice of sale is required and the relevant data has been forwarded through eNOS. The applicant

eNOS ID NO.I -- Full name:

Signature:

^{*} sII 7 RP Act requires that you must have known the signatory fo more than 12 months or have sighted identifying documentation. Page 1 of L ALL HANDWRJTING MUST BE IN BLOCK CAPITALS I708

www.nichollsco.com.au

15 April 2018

A. R. Nicholls 8,Com,c.A Trustee in Bankruptcy

Please reply to:

Nicholls & Co. Suite 6,459 !'eel S1ree1 Tamworth NSW 2340

PO Box 271 Tamworth NSW 2340 DX6l27. TAMWORTH

Phone: 1300 676 998 Facsimile: 02 6766 9263 tamworth@11ichollsco.com,u11 www.nichol!sco:com.au

Our

Ref:l;' RN:Sl.C:KM:7376/87 Your Ref:

Land Titles Office GPO Box 15 SYDNEY NSW 2001

DISCLAIMER OF ONEROUS PROPERTY

Dear Sir/Madam

BANKRUPT ESTATES OF: STEPHEN JOHN GRIFFIN NSW 5035/14/5 &

NERIDA JOY GRIFFIN NSW 5202/14/2

DISCLAIMED PROPERTY: 19 Denison Street, GLOUCESTER NSW 2422

I refer to the above listed bankrupt estates and advise that effective 31 October 2014 and 11 November respectively I, Alan Richard Nicholls, was appointed Trustee of both estates. Attached are copies of my Certificates of Appointment for your attention.

I also refer to the property of the bankrupt being the property situated at 19 Denison Street, Gloucester in the state of New South Wales and being the whole of the land referred to in Volume 571352 and Folio 1 in the land registration district of Gloucester and described as Lot I on Deposited Plan 571352. I hereby disclaim my interest in the property pursuant to section 133(3) of the Bankruptcy Act 1966, as the property is onerous there being no benefit to creditors of the bankrupt estates and in my opinion is not readily saleable. Attached is Form 11R pertaining to same.

Should you have any queries in relation to this matter please contact Kendyl Marchant (kendyl.marchant@nichollsco.com.au)of this office in the first instance.

Yours faithfully

AR NICHOLLS **TRUSTEE**

Encl: 2 x Certificates of Appo;ntment

2 x Form JJR

SERVICING ALL STATES AND TERRITORIES OF AUSTRALIA

Req:R174099 /Doc:DL AP278823 /Rev:22-Nov-2019 /NSW LRS /Pgs:ALL /Prt:10-Jun-2020 12:43 /Seq:1 of 2 @ Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

> Fonn: llR Release: 4 •3

REQUEST

New South Wales Real Property Act 1900

PRIVACY NOTE: Section 31BoftheReal Property Act1900 (RPAct)authorises the F

by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any.

All Statutory Declarations and evidence that are lodged in support of land dealings will be treated as publicly accessible and will be disclosed to persons upon request. STAMP DUTY | TC.

(A)	STAMP DOTT	If applicable.	Revenue NSW use only	
(B)	TORRENS TITLEI	1 571 3 5 Z	==========	===
(C)	REGISTERED _ DEALING	Numbe;	Torrens Title	
(D)	LODGED BY	Document Collection	Name, Address or DX, Telephone, and Customer Account Number if any Corsair Lawyers 7/16, 74-78 The Corso MANLY NSW 209(15"° Ot?,Z QCS -JQ-? CV.•,',@(',-l' P,r lot.Jy <':C <l.,,,,,. 209(15"°<="" manly="" nsw="" th=""><th>CODE</th></l.,,,,,.>	CODE
			Reference:lo: ARN: CLC: KM: 7376	
(E)	APPLICANT	ALAN RIC	HARD NICHOLLS	
(F)	NATURE OF	Disclaim	er of onerous pr?perty pursuant to s133(1) of the Bankrupt	cv Act

TEXT OF (G) REQUEST

REQUEST

1966 (Cth)

On 31 October 2014, the land in item B vested in the Applicant pursuant to s58(1) of the Bankruptcy Act 1966 (Cth)in his capacity as trustee of the bankrupt estate of Stephen John Griffin, a registered proprieto . The Applicant disclaimed that interest pursuant to s133(1) of the Bankruptcy Act 1966 (Cth) in accordance with the attached notice.

DATE 27/5/2019

(H)

Certified correct for the purposes of the Real Property Act 1900 on behalf of the applicant by the person whose signature appears below.

Signature:

Signatory's name: Signatory's capacity: Angus Charles Blair

solicitor

(I) This section is to be completed where a notice of sale is required and the relevant data has been forwarded through eNOS. The applicant certifies that the eNOS data relevant to this dealing has been submitted and stored under eNOS ID No. Full name: . Signature:

^{*} sll 7 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation. ALL HANDWRITING MUST BE IN BLOCK CAPITALS Page 1 of i 2 1708

www.nichollsco.com.au

15 April 2018

A. **R.** Nicholls 8.C•m,c.A,
Trustee in Bankruptcy

Nicholls & Co ' Suite 6,459 Peel Street TDmworth NSW 2340

Pl as reply to:

POBox 271 Tamworth NSW 2340 DX6127.TAMWORTH

Phone: 1300 676 998
Facsimile: 02 6766 9263
taJ\worth@nichollsco.com.au
www.nichollsco.com,a11

Our

Ref:ti:ARN:SI.C:KM:7376187

Your Ref:

Land Titles Office GPO Box 15 SYDNEY NSW 200 I

DISCLAIMER OF ONEROUS PROPERTY

Dear Sir/Madam

BANKRUPT ESTATES OF: STEPHEN JOHN GRIFFIN NSW 5035/14/5 &

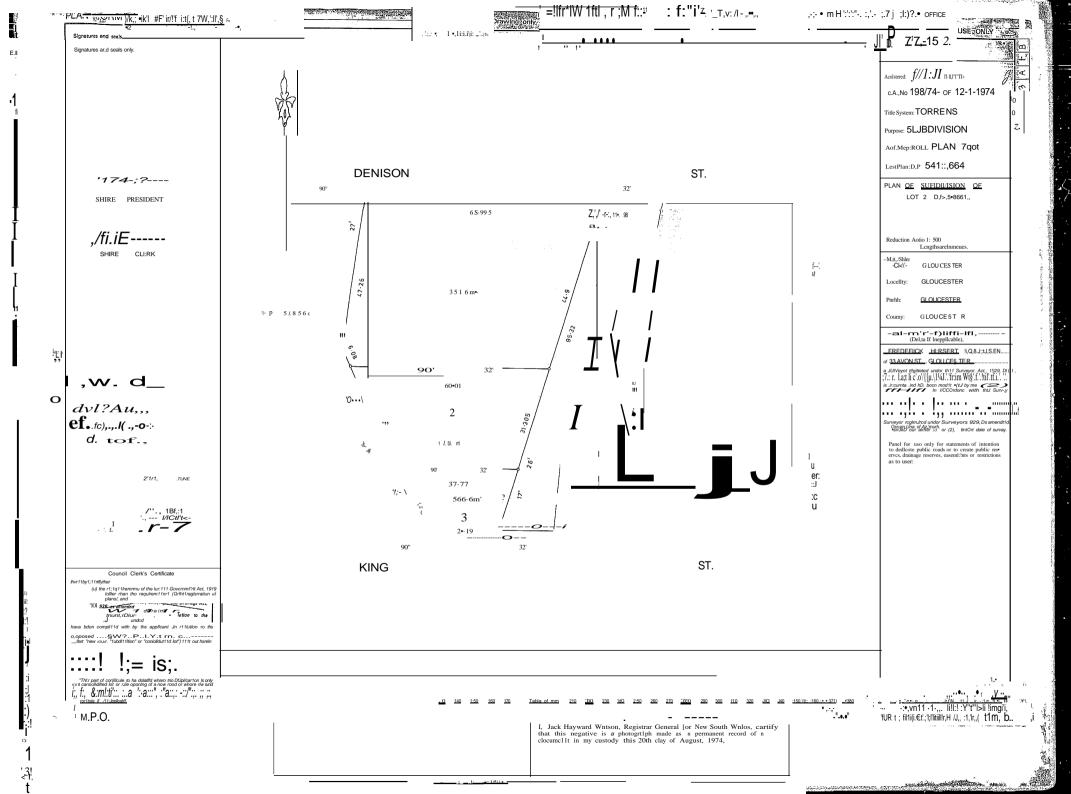
NERIDA JOY GRIFFIN NSW 5202/14/2

DISCLAIMED PROPERTY: 19 Denison Street, GLOUCESTER NSW 2422

I refer to the above listed bankrupt estates and advise that effective 31 October 2014 and 11 November respectively I, Alan Richard Nicholls, was appointed Trustee of both estates. Attached are copies of my Certificates of Appointment for your attention.

I also **refer** to the property of the bankrupt being the property situated at 19 Denison Street, Gloucester in the state of New South Wales and being the whole of the land referred to in Volume 571352 and Folio *I* in the land registration district of Gloucester and described as Lor 1 on Deposited Plan 571352. I hereby disclaim my interest in the property pursuant to section I33(3) of the *Bankruptcy Act 1966*, as the property is onerous there being no benefit to creditors of the bankrupt estates and in my opinion is not readily saleable. Attached is Form 11R pertaining to same.

Should you have any queries in relation to this matter please contact Kendyl Marchant (kendyl.marchant@nichollsco.com.au) of this office in the first instance.


Yours faithfully NICHOLLS & CO

AR NICHOLLS TRUSTEE

Encl: 2 x Certificates of Appo;ntment

2 x Form 1 JR

SERVICING ALL STATES AND TERRITORIES OF AUSTRALIA

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

10/6/2020 12:40PM

FOLIO: 1/571352

LOTTO

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 12522 FOL 218

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
8/8/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
28/1/2005	AB245923	REQUEST	
7/7/2005 7/7/2005	AB610201 AB610202	DISCHARGE OF MORTGAGE TRANSFER	EDITION 1
9/12/2010	AF932822	MORTGAGE	EDITION 2
14/8/2013	AH946467	CAVEAT	
24/11/2014	AJ52463	CAVEAT	
28/11/2014	AJ70591	CAVEAT	
4/12/2014	AJ82345	WRIT	
31/3/2015	AJ373945	CAVEAT	
5/12/2016	AK976141	DEPARTMENTAL DEALING	
2/11/2017	AM856084	DISCHARGE OF MORTGAGE	EDITION 3
14/11/2019	AP547184 AP547185 AP278817 AP278823	WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT REQUEST REQUEST	

*** END OF SEARCH ***

advlegs

PRINTED ON 10/6/2020

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/571352

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 10/6/2020
 12:39 PM
 3
 2/11/2017

LAND

LOT 1 IN DEPOSITED PLAN 571352

AT GLOUCESTER

LOCAL GOVERNMENT AREA MID-COAST

PARISH OF GLOUCESTER COUNTY OF GLOUCESTER

TITLE DIAGRAM DP571352

FIRST SCHEDULE

THE STATE OF NEW SOUTH WALES

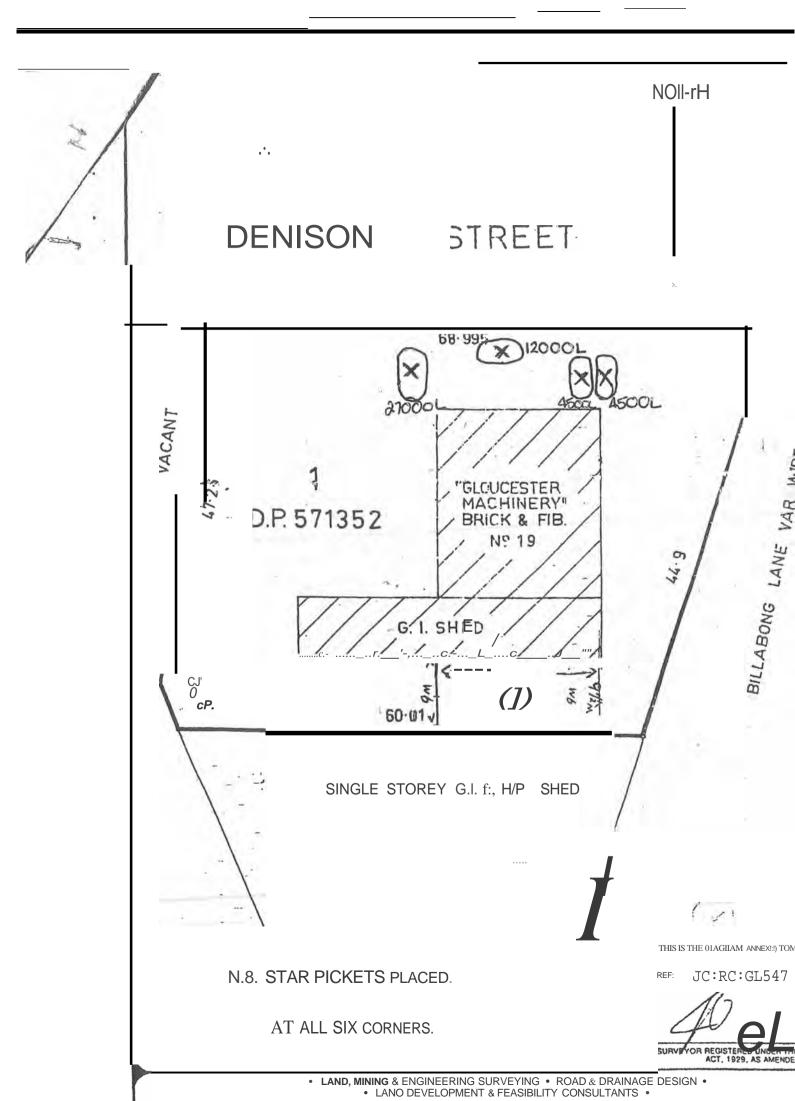
(R AP278823)

SECOND SCHEDULE (1 NOTIFICATION)

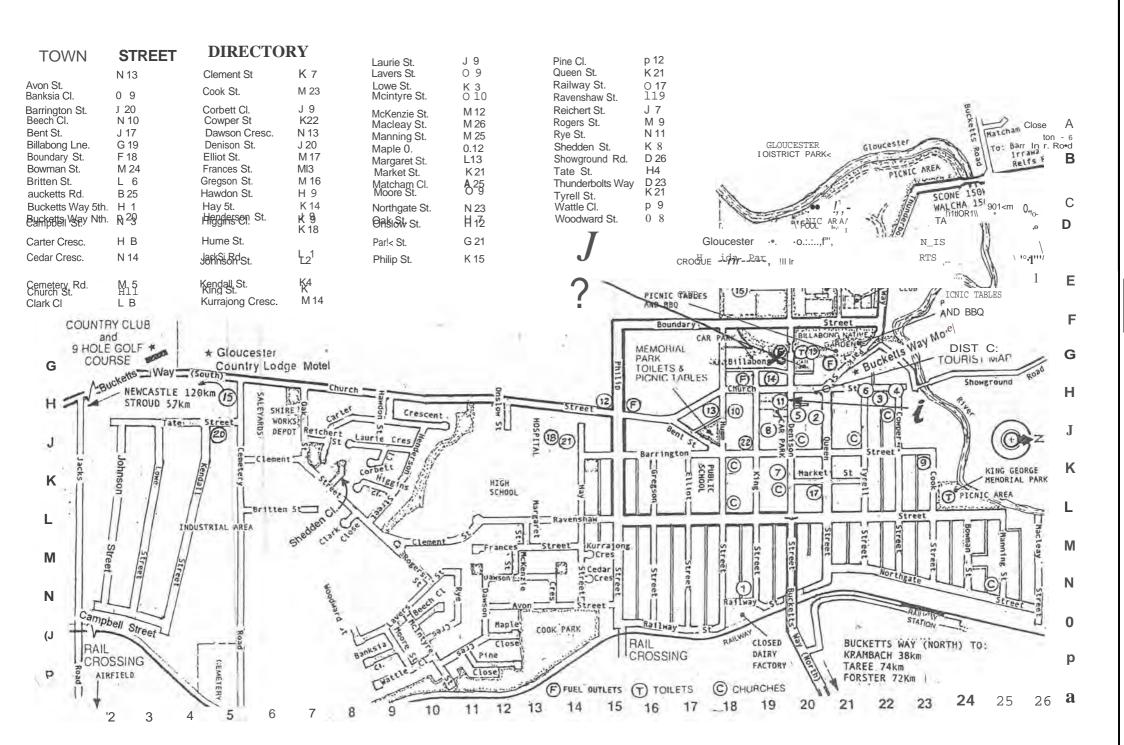
1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

NOTATIONS

UNREGISTERED DEALINGS: NIL


*** END OF SEARCH ***

advlegs


PRINTED ON 10/6/2020

List the dangerous goods that will be stored and/or processed on these premises (refer to Guide GDGOI). Copy this page and attach additional sheets if there is insufficient space.

	K1 1	on or prod	cess C	lass	Maximum Stora		/ (L, kg)	
	Underground	Tank		3	48000	Litres		
UN Number	Proper Shipping Name	Class	PG (I, 11, 111)	Product of	or Common Name	HazChem Code	Typical Qty	Unit eg L, k
1203	Petroi	S	lii			3i.fG'	4500	-L-
	Petroi		"			'!1-e-	45.00	{J_
1203			<u> </u>			- 1 0		. –
_	Diesel	 -				01.46	12000	,
1203	Petroi	17	II			3′-1€	27000	L-
Depot No	Type of storage location	on or prod	cess C	class	Maximum Stora	ge Capacity	/ (L, kg)	
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product	or Common Name	HazChem Code	Typical Qty	Unit eg L, k
		_						
		-						
Depot No	Type of storage location	on or pro	cess (Class	Maximum Stora	ige Capacity	/ (L, kg)	
UN Number	Proper Shipping Name	Class	PG (I, II, ifo	Product	or Common Name	HazChem		Unit
		Oldoo	(1, 11, 110			Code	Qty	eg L, l
		_						
		_						
		-						
		_						
Depot No	Type of storage location	on or pro	cess	Class	Maximum Stora	age Capacit	v (L. ka)	
Depot No	Type of storage location	on or pro	cess (Class	Maximum Stora	age Capacit	y (L, kg)	
							y (L, kg)	Unit
		_						
	Type of storage location	on or pro		Product	Maximum Stora or Common Name			
			PG	Product	or Common Name	HazChen	n Typical	
		Class	PG (I, II, III)	Product	or Common Name	HazChen Code	n Typical Qty	
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product	or Common Name	HazChen Code	n Typical Qty	eg L,
UN Number	Proper Shipping Name Type of storage location	Class	PG (I, II, III)	Product	or Common Name	HazChen Code age Capacit HazChen	y (L, kg)	eg L, l
UN Number	Proper Shipping Name Type of storage location	Class	PG (I, II, III)	Product	or Common Name	HazChen Code age Capacit HazChen	y (L, kg)	eg L, I

• 7 CANBERRA STREET, CHARLESTOWN. 2290 •

Licence No. 35/010782

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT. 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/010782 to 9/04/2002. I confirm that all the licence details shown below are correct (amend if necessary).

:f:t:::::t

(Date signed)

Enquiries: ph (02) 9370 5187

fax (02) 9370 6104

59,001,205,698

6 Charl 2001

for: GLOUCESTt:."H IV!ACHINERV CO P!L

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax)

WorkCover New South Wales

Dangerous Goods Licensing Section

GPO BOX 5364 SYDNEY 2001

Details of licence on 30 March 2001

Licence Number 35/010782 Expiry Date 9/04/2001

GLOUCESTER MACHINERY CO P/L ACN 001 205 698 Licensee

Postal Address: BOX 7 PO GLOUCESTER NSW 2422

Licensee Contact BILL MUSSARED Ph. 0265 5'81510

Premises Licensed to Keep Dangerous Goods

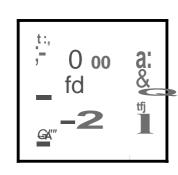
GLOUCESTER MACHINERY CO P/L 19 DENISON ST GLOUCESTER 2422

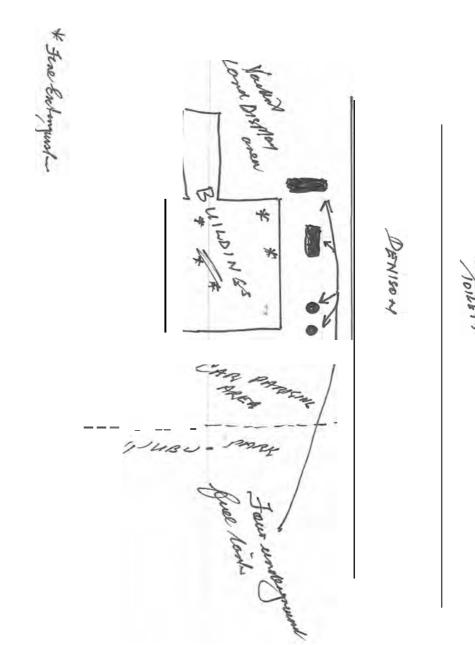
Nature of Site AUTOMOTIVE FUEL RETAILING

Major Supplier of Dangerotis Goods VARIOUS

Emergency Contact for this Site BILL MUSSARED Ph. 0265 581510

Site staffing 9 HRS 5 DAYS


Details of Depots


Depot No. Goods Stored in Depot ...-Depot Type Qty UNDERGROUND TANK Class 3 1 4600 L UN 1203 PETROL 4590 L **UNDERGROUND TANK** Class 3 3 12000 L UN 1203 PETROL 12000 L **UNDERGROUND TANK** 4 27600 L Class 3 UN 1203 PETROL 27600 L

Fax. 0265 582

ORK(OVER

Please carefully read the instructions in Part B of the guide before sketching the site.

0J. 000 Jv

(

Salar Services

(21)?

Depot number	Type of depot		(Class		d maximu e capacity		
J	Type of depot dendergrowne I wel storag.	e	1	3.	1	60.000	lytras.	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name		Typical quantity	Unito
1203	B.P. and rale Atd,	3	//	3A-I	PETROL		1000 .	
Depot number	Type of depot		(Class-		d maximul	*(JT. I	o 9
)	<i>∪‰</i> - rank,			":<3		G00	Jf	
UN number	Shipping name	- Class	Pkg. Group	EPG	Produ:i;:t or common name		Typical quantity	Unit L,kg
tl.D3	Ptltrrl		11	3A-	Et-ru-	l	/S'CfD	
		Е						
Depot number	Type of depot		(Class		ed maximu ge capacity	7)6
2_	U/<> {Qv) {_			3	C/-b	OD /f -		
UN number	Shipping name	Class	Pkg. Group	EPG	Prodt:1eror common name		Typical quantity	Uni L,k(
!20)	Pttrtr\	.,- *	/Jt	3/i-(e-, ·v:e)			
	1311				 [?}(<i>Q,M,f</i> ° <i>t</i> -			
Depot number	Type of depot			Class		ed maximu ge capacit		
3	V{G 1 oj;)k,			3	12-0	00	l.:/	
UN number	Shipping name	Class	Pkg. s Group	o EPG	Product or common name		Typical quantity	Uni L,k

.!/

b

3 rt1

 $U.(\ K \ Q \ d:/2.(,t \ .$

Complete 1 section per depot

If you have more depots than the space provided, photocopy sufficient shee s irst.

Depot number	Type of depot		Class	Licensed maxin storage capac		
4	U/_G TQni.c,,		3	/r 6 00	&,	
UN number	Shipping name	F Class G	Pkg. Group EPG	Product or common name	Typical quantity	Uniteg, L,kg,m³
/1.[&	p	-3	Tr 3 A,	, £		
				-		
			I			
		+	-			+
	_					

Depot number	Type of depot		Class	6	Licensed ma storage ca		
UN number	Shipping name	Class	Pkg. Group EP	 Э	Product or common name	Typical quantity	Uniteg L,kg,m

INFLAMMABLE LIQUID A<T, 1915 (AS AMENDED) _.,. r

Application for Registration of Premises oi Store Licence u der Division or for the transfer alteration or amendment of any such Registration or Licence, for the keeping of Inflammable Liquid and/or Dangerous-Goods, in accordance with the provisions of the Inflammable Liquid Act, 1915 (as amended), for the ensuing year.

EXPLANATORY

Inflammable Liquid-

Page 1 •

<u>Mineral Oil-includes</u> kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing_same. <u>MJoeral Spirit-includes</u> petrol, benzene, benzelene, benzel and naphtha, and compositions containing same. 9

Dangerous Goods-

Class 1-acetal, acetaldehyde, acetone, acrolein, amyl mercaptan, butyl acetate, butyl mercaptan, butyl propionate, crotonaldehyde, dichloro-ethylene, diethylketone, dioxane, diethylamine, dimethyl hydrozine, dipropylamine, divinyl ether, dipropyl ether, ethyl acetate, ethyl acrylate, ethyl chloride, ethyl ether, dichloroethane (ethylene dichloride), ethyl mercaptan, ethyl methacrylate, ethyl methyl ether, ethyl propyl ether, ethyl propyl ether, ethyl propyl ketone, methyl acetate, methyl acrylate, methylal, methyl ethyl ether, methyl ethyl ketone, methyl methacrylate, methyl vinyl ketone, methyl vinyl acetate, piperidine, propanal, propyl acetate, propylamine, propylene oxide, pyridine, tetrahydrofuran, thiophene; triethylamine, valeraldehyde, vinyl acetate, vinyl allyl ether, vinyl butyl ether, vinyl butyrate, vinyl cyanide (acrylonitrile), vinylidene chloride, vinyl ethyl ether, vinyl propyl ether, vinyl propionate, any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit manufactured products, containing organic solvents, having a true flashing point of less than 73 degrees Fahrenheit.

Class 2-acetic acid, acetyl acetone, acetic anhydride, ally! alcohol, amyl acetate, amyl alcohol, butyl alcohol, butyl methacrylate, chlorobenzene, cyclohexanone, dibutyl ether, dibutyl ketone, dipentene, epichlorohydrin, ethanol (ethyl alcohol), ethyl benzene, ethylene diamine, furfural, mesityl oxide, methyl alcohol, methyl amyl ketone, methyl butyl ketone, pine oil (having a flashing point below 150° F), propyl benzene, propanol, vegetable turpentine, vinyl benzene (styrene monomer), any liquid containing more than 50 per centum ethyl alcohol, manufactured products, containing organic solvents, having a true flashing point of 73 degrees Fahrenheit and above but not exceeding 150 degrees Fahrenheit.

Class 3-nitro-cellulose moistened with an alcohol, ilitro-cellulose product.

Class 4-compressed or dissolved acetylene contained in a porous substance.

Cla s 5 (A)-liquefied inflammable gases (liquefied petroleum gas, vinyl chloride ethylene chloride, ethylene oxide, butadine, methylamine, dimethylamine, and trimethylamine).

Class 9-carbon, disulphide, ethyl nitrite.

DIRECTIONS

Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Sydney, and must be accompanied by the prescribed fee, as set out in Regulation 7.

I.	Name of occupier including full Christian names	EWOAM MUSSARED OWNERS
	.,;fpr,{p d /,"	GLOUCESTER, MACHINERY Co. Pty. Ltd.
2.	Occupation	BLOUCESTER MACHINERY Co. Pty. Ltd MOTOR BARAGE . S. XV1 C- SFIT_1_
3.	Locality of the premises in which the depot or depots are situated	No. or Name F':: 6'/oure.r{vJ} /J1r.d1n.P.::f('!. /J/J. /4f6
		Street ./. 1 1) I=Ai ISO N S r.
	\6 14	Town At.oc.ut:'S" Tc'&:
4.	Nature of premises (Dwelling, Garage, Store, etc.)	.il-1-'(nor
		Postcode 2427

5. Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any one time

	PLEASE ATTACH PLAN OF PREMISES										
	Cons	truction of dep	oots*	Inflamma	ble liquid	I		Dangero	us goods		
Depot No.	Walls	Roof	Floor	Mineral Spirit gallons i.,,,e-I,t/	Mineral Oil gallons !her leilhl	Class I gallons	Class 2 gallons	Class 3 lb	Class 4 cu ft	Class 5A water gallons	Class 9 gallons
2	::1t,,/l;vu!J	[L,,:1 'ead/_ <u>/OD</u>	a.£	FOOD							
3 4 /	(.e/flU	m :1"				d./es).,,,.;	,,L	}		
5	.,(.e, ./siv <u>er</u>	/IA9 -			<u>ff"</u>			v	,/,		
6								=>us	IC R	::VEN	LJE,A
7								==,	b	<u>\$h</u>	<u>io -</u>
						1			I		
9	2 ,							LD.ak Receip	()	/ / 1	
10		. I	•,					кесец	1 1VO	··/• J : _	_,,α

^{*} If product is kept in tanks describe depots as underground or aboveground tanks.

€...-.-, ...C.---,..,

J.VY'l,,I. pv.Luv.11, UC J.51.1eu '-V }IJ.CY'CUt. VUUJ.V'fY.
$\frac{1}{2}$
J) emson 8.
''''
I Premise Poline Tank.

, _	O.J c,v11 v,	11cerise, ror	.ne ł	Keeping or	inr;ammao;e ı	uqu1a ana;o1-	uangerous
G-6oci::i1 c\Ccordance with the	provisions of the Inf	lammable Li9ui	d Act.	1915-53, f	for the ensui	na ve a	ar_/-

EXPLANATORY

Inflammabl Liquid-

Mineral Oil-includes kerosene, mineral turpentine and white spirit (for cleaning), and compos1t1ons containing same. Mineral Spirit-includes petrol, benzene, benzolene, benzol and naphtha, and compositions containing same.

specified. Place.....

...4/4 .s

Class 1.-Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.

Class 2.-Nitro-cellulose (also known as "pyroxylin" and "collodion cott0n") moistened with an alc9!:P •(al 9 known as butanol "), methylated spirits, vegetable turpentine; and any liqu;d or solid containing met' y ci:."tp(iiEs,P .fi\giw .;_t;r . flashing") point of less than 150 degrees Fahrenheit. .--;\"1\;..;::,

Class 3.-Nitro-cellulose product.

Class 4.-Compressed or dissolved acetylene contained in a porous substance.

D:;, / Q_'v \ \| L1.I

е

DIRECTIONS I.Applications must be forwarded to the Chief Inspector of Inflammable Liquid Explosiv.e epaFtm i'{.'No. 4 Albert St , off hillip Street, Circular Quay, Sydney (Box 48, G.P.O.). must be accompanied by the prescribed fee, et out hereunder:-

Regiltration of Premises (Fee £1 IOs. Od. p.a.).-For qua:.tities not exceeding 300 gallons of min r. <u>LLaa.cU.00.::qal'lciifiof</u> mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallo s of mineral spirit, if kept in separate depo.s; or"sOO gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mi:1eral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes I and 2 may be kept under the like conditior;s; reading Dangerous Goods of Class I for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.

Store License, Div. A (Fee, £3 5s. Od. p.a.).-For quantities in excess of those stated above, but not exceeding 4,000 gallons mir.eral oil and/or mineral spirit, ar.d/or Dangerous Gcods of Cl::isses I and 2.

Store Lic2nse, Div. B (Fees, See Regulation 7).-For quantities exceeding 4,000 gallons of mineral oil and/or mineral spirit, and/or dangerous goods of Classes I and 2, and/or dangerot:s goods of Class 3. For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 iOs. Od. p.a.).

2. The certificate of inspection at foot hereof must be igne:d by an Inspector under the Inflammable Liquid Act, 1915-1953, or Police Officer, or other officer duly authorised in that behalf, a,,d where the premises are situated outside the Metropo!itan Area of Sydney, it is requested

I. Name	e in full of o:cupier			910	ucos	6-70	<u>*</u> >"?	<u> </u>	14
2. Occup	pation								
3. Local	ity of the premises in	which the depot or	depots are situated			⇒			
4. Nature of premises (Dwelling, Garage, Stor, etc.)5. Will mineral spirit be kept in a prescribed underg1 ound tank depot?			Street			r			
6. Par	ticulars of construction	of depots and maxi	mum qua;;"i:ities of	inflammable lid	quid and/or Da	ngerous Goo	ods to be ke	ept at any o	ne time.
	Con	struction of Depots.		Inflammab	ole Liquid.		Dangerou	s Goods.	
Depot No.	Walls.	Roof.	Floor.	Mineral Spirit, Gallons.	Mineral Oil. Gallons.	Class I. Gallons.	Class 2. Gallons.	Class 3. lb.	Class 4. vcub• ft.
I	· <u> </u>	ey"	?A	;'c '9""				L.S. /	D _
2				/ c> <j,c></j,c>			- '		<u> </u>
3				<u> </u> 		-		(1\	
. 5					- ,0(t) "2_'	; "+f"		
6					, , , ,		J. "		
7						1'.1tt\t>t			
8									
9									
10									
¹\re o	fApplicationA		S19		al Address	Λ	-?	2-:	- bl
, - Liquid to its si	Act, 1915-53, do h	ereby certify that	t the premises or	store herei	n referred to	o and des	cribed is	suitable w	ith regard

Signature of Inspector

Make Rough Sketches showing-

Ground plans of premises showing position of depot or depots Sketch of depot or depots showing provision made for vf and adjacent buildings, also distances separating depots and

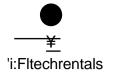
also inside dimensions (length, width, and depth) 011 .:: pi1;, or lower portion, designed to prevent outflow.

This sketch is not required for underground tanks.

TABLES SHOWING DISTANCES WHICH <u>UNDER LICENSE</u> MUST SEPARATE PROTECTED WORKS FROM DEPOTS.

Table 1,-Where Mineral Spirit and/or Dangerous Goods of Class I (with or without Mineral Oil and/or Dangerous Goods of Class 2) are kept or to be kept :-

In an underground Tank Depot, In quantity exceeding 500 gallons, but not exceeding-	In an aboveground Tank Depot or other Depot, separated from protected works by a screen wall, in quantity exceeding I 00 gallons, but not exceeding-	In an aboveground Tank Depol or other Depot not separated from protected works by a screen wall, in quanlity exceeding 100 gallons, but not exceeding-	D!stance not less than-
Gallo'ns. 2,000 2,400 2,400 2,800 S,200 3,600 4,000 7,200 10,400 13,600 16,800 20,000 22,000 24,000 26,000 28,000 30,000 32,000 40,000 80,000 100,000 and over.	Gallons. 1,000 1,200 1,400 1,600 1,800 2,000 3,600 5,200 6,800 8,400 10,000 11,000 12,000 13,000 14,000 15,000 16,000 20,000 40,000 80,000 320,000 and over.	Gallons. 150 300 300 350 400 450 500 900 1,300 1,700 2,100 2,500 3,250 3,750 3,750 3,750 3,100 5,000 10,000 20,000 40,000 80,000 120,000 400,000 and over.	Feet. JO II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 30 40 50 75 JOO 115 130 150


Table 11.........Where MiAeral Oil and/or Daffgerous Goods of Class 2 only are kept or to be kept :-

In an underground Tank Depot, In quantity exceeding 800 gallons, but not exceeding-	In an aboveground Tank Depot or other Depot separated from protected works by a screen wall, In quantity exceeding 800 gallons, but not exceeding-	In an aboveground Tank Depot or other Depot not separated from protected works by a screen wall, In quantity exceeding 800 gallons, but not exceeding-	Distance not less than-
Gallons. 4,000 8,000 14,400 20,800 40,000 80,000 160,000 320,000 and over.	Gallons. 2,000 4,000 7,200 10,400 20,000 40,000 80,000 160,000 320,000 and over.	Gallons. 1,000 2,000 3,600 5,200 10,000 20,000 40,000 80,000 160,000 320,000 and over.	Feet. JO 15 16 17 20 30 40 50 75

Appendix D

Calibration Certificates

Calibration Record Form

Model:	HAN,9829-4M
Asset No:	204256
Serial No:	04110064101
Worksheet No.:	599917
Location:	TR Brisbane
Calibration Date:	14/12/2021
Comments:	
Completed by:	Nathaniel Brewer

Reference Solutions	Lot No	Meter Reading - After Adlustment
Temperature (meter)		23.9 degC
Turbidity 0 FNU	4915	0.1 FNU
Turbidity 20 FNU	5678	20.3 FNU
Turbidity 200 FNU	5679	201 FNU
Conductivity 12.88 mS/cm	354761	12.89 uS/cm
pH Buffer 4	360389	4.01pH
pH Buffer 7	358578	7.01pH
Hanna 240mV@ 25 ° de11C	5766	240 mV @ 23.6 degC
DO 100% Saturation Water saturated Air	-	100%
DO 0% Saturation Sodium Sulphite Solution	1811279841	0%

Calibration Record Form

Model:	RAE,MINIRAE3000+
Description:	Handheld VOe Monitor
Serial No.:	592-927170
Asset:	203941

Range	Source	Tolerance	Reading	Pass/Fall
-	Fresh Air	-	0.0	Pass
100ppm Isobutylene	Lot No 236360 Exp Date Mar 2023	2%	100.0	Pass

Worksheet No.:	I s9903s		
Location:	I TR Brisbane		
Calibration Date:	l 16/11/21		
Comments:	Т		
Completed by: I	AX Signed:	I ,\r-J'	Date: 16/11/2021

Appendix E Letter from Dr David Tully CEnvP SC

Contaminated Land Solutions

8 February 2022

Ref: CLS0182.L01

Regional Geotechnical Solutions Pty Ltd 44 Brent Street Wingham NSW 2429

For the attention of Andrew Hills

Dear Andrew,

RE: Report Review: Stage 1 & 2 Site Contamination Assessment– Proposed Visitor Information Centre, 17 Denison Street, Gloucester

I, Dr David Tully of Contaminated Land Solutions Pty Ltd, am a Certified Environmental Practitioner Site Contamination Specialist (General Certified Environmental Practitioner certification no. 1138 and Site Contamination Specialist certification no. SC40084).

I confirm I have reviewed the Regional Geotechnical Solutions letter report entitled "Stage 1 & 2 Site Contamination Assessment—Proposed Visitor Information Centre, 17 Denison Street, Gloucester" (Ref: RGS02423.1-AB), dated 4 February 2022 and a copy of which I have retained.

I can confirm that on the basis of the information contained within the letter report, I support the conclusions and recommendations provided therein.

Should the client, regulator or local authority have any queries regarding the report review, I can be contacted by e-mail via david.tully@contaminatedlandsolutions.com.au. Specific queries regarding the content of the report should be addressed to Andrew Hills at Regional Geotechnical Solutions.

For and on behalf of

Contaminated Land Solutions Pty Ltd

Dr David Tully CEnvP SC

Director

Contaminated Land Solutions Pty Ltd

Contaminated Land Solutions Pty Ltd 10 Heath Road Crafers West SA 5152